How many grams of gas are present in each of the following cases?

(a)0.1L of CO2at 307 torr and \({\rm{2}}{{\rm{6}}^{\rm{^\circ }}}{\rm{C}}\)

(b) 8.75L of C2H4, at 378.3KPa and 483K

(c) \({\rm{221\;mL}}\)of Ar at 0.23 torr and -540C

Short Answer

Expert verified

a) \({\rm{7}}{\rm{.2 \times 1}}{{\rm{0}}^{{\rm{ - 2}}}}\)grams of \({\rm{C}}{{\rm{O}}_{\rm{2}}}\)is present in the first case.

b) In the second case, \({\rm{22}}{\rm{.96}}\)grams of \({{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}\)is present.

c) In the last case, \({\rm{1}}{\rm{.4 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}\)grams of\({\rm{Ar}}\)is present.

Step by step solution

01

Explanation of the ideal gas law

The pressure, volume, temperature, and the number of moles of a gas are all related by the ideal gas law.

It is given as

\({\rm{PV = nRT}}\).

\(\begin{aligned}{}{\rm{P = pressure of the gas}}{\rm{. }}\\{\rm{V = volume of the gas}}{\rm{.}}\\{\rm{ n = number of moles of the gas}}{\rm{.}}\\{\rm{ T = temperature of the gas}}{\rm{. }}\end{aligned}\)

\(\begin{aligned}{}{\rm{R = Ideal gas constant }}\\{\rm{ = 0}}{\rm{.08206\;L atm mo}}{{\rm{l}}^{{\rm{ - 1}}}}{{\rm{K}}^{{\rm{ - 1}}}}\end{aligned}\).

The amount of the gas \({\rm{(n)}}\)is in moles, temperature \({\rm{(T)}}\) is in Kelvin \(\left( {\rm{K}} \right){\rm{,}}\) and pressure \({\rm{(P)}}\)is in atm.

02

Calculating the quantity of gas present in Case (a)

a)

Given,

\(\begin{aligned}{}{\rm{Volume (V) = 0}}{\rm{.1\;L}}{\rm{.}}\\{\rm{Pressure (P) = 307 torr}}{\rm{. }}\\{\rm{Temperature (T) = 2}}{{\rm{6}}^{\rm{^\circ }}}{\rm{. }}\\{\rm{Amount of gas (n) = ? moles}}{\rm{. }}\end{aligned}\)

However, temperatureismeasuredin celsiusrather than kelvins (absolute scale), and pressure is measured in torrs rather than atm.

As a result, we must convert the temperature from degrees celsiusto kelvins.

We have\({{\rm{0}}^{\rm{^\circ }}}{\rm{ = (0) + 273}}{\rm{.15K}}\).

So,

\(\begin{aligned}{}{\rm{2}}{{\rm{6}}^{\rm{^\circ }}}{\rm{ = (26) + 273}}{\rm{.15K}}\\{\rm{ = 299}}{\rm{.15K}}\end{aligned}\).

Converting pressure in torr into atm:

We have\({\rm{1 torr = 0}}{\rm{.0013}}\)atm.

So,

\(\begin{aligned}{}{\rm{307 torr = (307) \times (0}}{\rm{.0013) atm}}{\rm{. }}\\{\rm{ = 0}}{\rm{.403\;atm}}{\rm{.}}\end{aligned}\).

\({\rm{PV = nRT}}\)

The no. of moles of gas \({\rm{(n) = }}\frac{{{\rm{PV}}}}{{{\rm{RT}}}}\)

\(\begin{aligned}{}{\rm{ = }}\frac{{{\rm{(0}}{\rm{.403) \times (0}}{\rm{.1)}}}}{{{\rm{(0}}{\rm{.08206) \times (299}}{\rm{.15)}}}}{\rm{mol}}\\{\rm{ = }}\frac{{{\rm{0}}{\rm{.0403}}}}{{{\rm{24}}{\rm{.55}}}}\\{\rm{ = 0}}{\rm{.00164 moles}}{\rm{. }}\end{aligned}\)

Converting \({\rm{0}}{\rm{.00164}}\)moles of \({\rm{C}}{{\rm{O}}_2}\) into grams of\({\rm{C}}{{\rm{O}}_{\rm{2}}}\):

The atomic weight of carbon \(\left( {\rm{C}} \right){\rm{ = 12}}\) grams.

The atomic weight of oxygen \(\left( {\rm{O}} \right){\rm{ = 16}}\) grams.

So, the molecular weight of \({\rm{C}}{{\rm{O}}_{\rm{2}}}{\rm{ = (12) + (2) \times (16)}}\) grams.

\(\begin{aligned}{}{\rm{ = 12 + 32}}\\{\rm{ = 44 grams}}\end{aligned}\).

So,\({\rm{1}}\)mole of \({\rm{C}}{{\rm{O}}_{\rm{2}}}{\rm{ = 44}}\) grams of\({\rm{C}}{{\rm{O}}_{\rm{2}}}\).

\({\rm{0}}{\rm{.0016}}\)moles of \({\rm{C}}{{\rm{O}}_{\rm{2}}}{\rm{ = (0}}{\rm{.00164) \times (44)}}\) grams of\({\rm{C}}{{\rm{O}}_{\rm{2}}}\).

\({\rm{ = 0}}{\rm{.072}}\)grams of\({\rm{C}}{{\rm{O}}_2}\).

\( = 7.2 \times {10^{ - 2}}\)grams of\({\rm{C}}{{\rm{O}}_2}\).

After evaluating, we get\(7.2 \times {10^{ - 2}}\)grams of \({\rm{C}}{{\rm{O}}_2}\).

03

Calculating the quantity of gas present in Case (b)

Given:

\(\begin{aligned}{}{\rm{ Volume (V) = 8}}{\rm{.75\;L}}{\rm{. }}\\{\rm{Pressure (P) = 378}}{\rm{.3kPa}}{\rm{. }}\\{\rm{Temperature (T) = 483\;K}}{\rm{.}}\\{\rm{ Amount of gas (n) = ? moles}}{\rm{. }}\end{aligned}\)

Converting pressure in \({\rm{kPa}}\)into atm:

We have\({\rm{1kPa = 0}}{\rm{.0098\;atm}}\).

So,

\(\begin{aligned}{}{\rm{378}}{\rm{.3kPa = (378}}{\rm{.3) \times (0}}{\rm{.0098)atm}}{\rm{.}}\\{\rm{ = 3}}{\rm{.73\;atm}}\end{aligned}\).

\({\rm{PV = nRT}}\).

The no. of moles of gas \({\rm{(n) = }}\frac{{{\rm{PV}}}}{{{\rm{RT}}}}\)

\(\begin{aligned}{}{\rm{ = }}\frac{{{\rm{(3}}{\rm{.73) \times (8}}{\rm{.75)}}}}{{{\rm{(0}}{\rm{.08206) \times (483)}}}}{\rm{ moles}}{\rm{. }}\\{\rm{ = }}\frac{{{\rm{32}}{\rm{.6375}}}}{{{\rm{39}}{\rm{.6349}}}}\\{\rm{ = 0}}{\rm{.82 moles}}{\rm{. }}\end{aligned}\)

Converting \({\rm{0}}{\rm{.82molesof}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}\)into grams of \({{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}\):

The atomic weight of carbon (C) \({\rm{ = 12}}\) grams.

The atomic weight of hydrogen \({\rm{(H) = 1}}\)gram.

So, the molecular weight of \({{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{ = (2) \times (12) + (4) \times (1)}}\)grams.

\({\rm{ = 24 + 4}}\)

\({\rm{ = 28}}\)grams.

So, 1 mole of \({{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{ = 28}}\) grams of \({{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}\).

\({\rm{0}}{\rm{.82}}\)moles of \({{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{ = (0}}{\rm{.82) \times (28)}}\) grams of \({{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}\).

\({\rm{ = 22}}{\rm{.96}}\)grams of \({{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}\).

After evaluating, we get\({\rm{22}}{\rm{.96}}\)grams of \({{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}\).

04

Calculating the quantity of gas present in Case (c)

Given:

\(\begin{aligned}{}{\rm{ Volume (V) = 221\;mL}}{\rm{. }}\\{\rm{Pressure (P) = 0}}{\rm{.23 torr}}{\rm{. }}\\{\rm{Temperature (T) = - 5}}{{\rm{4}}^{\rm{^\circ }}}{\rm{. }}\\{\rm{Amount of gas (n) = ? moles}}{\rm{. }}\end{aligned}\)

However, temperatureisprovided in degrees celsiusrather than kelvins (absolute scale), pressure is given in torrs rather than atm, and volume is given in mL rather than L.

As a result, we must convert the temperature from degrees celsiusto kelvins. We have\({{\rm{0}}^{\rm{^\circ }}}{\rm{ = (0) + 273}}{\rm{.15K}}\)

So,

\(\begin{aligned}{}{\rm{ - 5}}{{\rm{4}}^{\rm{^\circ }}}{\rm{ = ( - 54) + 273}}{\rm{.15K}}\\{\rm{ = 219}}{\rm{.15K}}\end{aligned}\).

Converting pressure in torr into atm:

We have 1 torr \({\rm{ = 0}}{\rm{.0013\;atm}}{\rm{.}}\)

So,

\(\begin{aligned}{}{\rm{0}}{\rm{.23 torr = (0}}{\rm{.23) \times (0}}{\rm{.0013) atm }}\\{\rm{ = 0}}{\rm{.00029\;atm}}\end{aligned}\).

Converting volume in \({\rm{mL}}\)into \({\rm{L}}{\rm{.}}\):

We have\({\rm{1\;mL = 0}}{\rm{.001\;L}}\).

So,

\(\begin{aligned}{}{\rm{221mL = (221) \times (0}}{\rm{.001)L}}{\rm{.}}\\{\rm{ = 0}}{\rm{.221L}}\\{\rm{.PV = nRT}}\end{aligned}\).

\(\begin{aligned}{}{\rm{The no}}{\rm{. of moles of gas(n) = }}\frac{{{\rm{PV}}}}{{{\rm{RT}}}}\\{\rm{ = }}\frac{{{\rm{(0}}{\rm{.00029) \times (0}}{\rm{.221)}}}}{{{\rm{(0}}{\rm{.08206) \times (219}}{\rm{.15)}}}}{\rm{ moles}}{\rm{. }}\\{\rm{ = }}\frac{{{\rm{0}}{\rm{.000064}}}}{{{\rm{17}}{\rm{.983}}}}\\{\rm{ = 0}}{\rm{.0000035 moles}}{\rm{. }}\end{aligned}\)

Converting 0.0000035 moles of Ar into grams of Ar:

The molecular weight of argon \({\rm{(Ar) = 40}}\)grams.

\(\begin{aligned}{}{\rm{ i}}{\rm{.e}}{\rm{. 1 mole of (Ar) = 40 grams of }}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{.}}\\{\rm{0}}{\rm{.0000035 moles of (Ar) = (0}}{\rm{.0000035) \times (40) grams of Ar}}{\rm{. }}\\{\rm{ = 0}}{\rm{.000014 grams of Ar}}{\rm{. }}\\{\rm{ = 1}}{\rm{.4 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{ grams of Ar}}{\rm{. }}\end{aligned}\)

After evaluating, we get the required number as\({\rm{1}}{\rm{.4 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}\)grams of Ar.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The chlorofluorocarbon CCl2F2 can be recycled into a different compound by reaction with hydrogen to produce CH2F2(g), a compound useful in chemical manufacturing: CCl2F2 (g) + 4H2 (g)⟶CH2F2 (g) + 2HCl(g)

(a) Outline the steps necessary to answer the following question: What volume of hydrogen at 225 atm and 35.5 °C would be required to react with 1 ton (1.000 × 103 kg) of CCl2F2?

(b) Answer the question

While resting, the average\({\rm{70 - kg}}\)human male consumes \(14\;{\rm{L}}\) of pure \({{\rm{O}}_2}\) per hour at \({25^\circ }{\rm{C}}\)and \({\rm{100 kPa}}\). How many moles of \({{\rm{O}}_2}\)are consumed by a \({\rm{70\;kg}}\)man while resting for \({\rm{1}}{\rm{.0\;h}}\)?

A sample of gas isolated from unrefined petroleum contains \({\rm{90}}{\rm{.0\% C}}{{\rm{H}}_{\rm{4}}}{\rm{, 8}}{\rm{.9\% }}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{6}}}{\rm{, and 1}}{\rm{.1\% }}{{\rm{C}}_{\rm{3}}}{{\rm{H}}_{\rm{8}}}\) at a total pressure of\({\rm{307}}{\rm{.2 kPa}}\). What is the partial pressure of each component of this gas? (The percentages given indicate the percent of the total pressure that is due to each component.)

An alternate way to state Avogadro’s law is “All other things being equal, the number of molecules in a gas is directly proportional to the volume of the gas.” (a) What is the meaning of the term “directly proportional?” (b) What are the “other things” that must be equal?

Automobile air bags are inflated with nitrogen gas, which is formed by the decomposition of solid sodium azide (NaN3). The other product is sodium metal. Calculate the volume of nitrogen gas at 27 °C and 756 torr formed by the decomposition of 125 g of sodium azide

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free