A cylinder of medical oxygen has a volume of \({\rm{35}}{\rm{.4\;L}}\) and contains \({{\rm{O}}_{\rm{2}}}\)at a pressure of \({\rm{151 atm}}\) and a temperature of \({\rm{2}}{{\rm{5}}^{\rm{^\circ }}}{\rm{C}}\). What volume of \({{\rm{O}}_{\rm{2}}}\) does this correspond to at normal body conditions, that is, \({\rm{1 atm}}\)and\({\rm{3}}{{\rm{7}}^{\rm{^\circ }}}{\rm{C}}\)?

Short Answer

Expert verified

At normal body temperatures, the volume of an oxygen cylinder is \({\rm{5560}}{\rm{.54\;L}}{\rm{.}}\)

Step by step solution

01

Definition of ideal gas

The general gas equationis known to be an ideal gas law. Despite its flaws, the ideal gas law provides a goodapproximation of the behaviour of various gases under a variety of situations.

02

Explanation for ideal gas law

Pressure, volume, temperature, and the number of moles of a gas are all related by the ideal gas law.It is given by

\({\rm{PV = nRT}}\)

where,

\(\begin{aligned}{}{\rm{P = pressure of the gas}}{\rm{. }}\\{\rm {V = volume of the gas}} {\rm{.}}\\{\rm{ n = number of moles of the gas}}{\rm{.}}\\{\rm{ T = temperature of the gas}}{\rm{. }}\end{aligned}\)

and

\(\begin{aligned}{}{\rm{R = Ideal gas constant }}\\{\rm{ = 0}}{\rm{.08206\;L atm mo}}{{\rm{l}}^{{\rm{ - 1}}}}{{\rm{K}}^{{\rm{ - 1}}}}\end{aligned}\)

ifthe amount of the gas \({\rm{(n)}}\)is in moles, temperature \({\rm{(T)}}\) is in kelvin \(\left( {\rm{K}} \right){\rm{,}}\)and pressure \({\rm{(P)}}\)is in atm.

03

Understanding Combined Gas Law

So, we have the Combined Gas Law with a constant number of moles of an ideal gas under two distinct circumstances.

\({\rm{PV = nRT}}\)

\(\begin{aligned}{}\frac{{{{\rm{P}}_{\rm{1}}}{{\rm{V}}_{\rm{1}}}}}{{{{\rm{T}}_{\rm{1}}}}}{\rm{ = nR}}\\\frac{{{{\rm{P}}_{\rm{2}}}{{\rm{V}}_{\rm{2}}}}}{{{{\rm{T}}_{\rm{2}}}}}{\rm{ = nR}}\end{aligned}\)

i.e.\(\frac{{{{\rm{P}}_{\rm{1}}}{{\rm{V}}_{\rm{1}}}}}{{{{\rm{T}}_{\rm{1}}}}}{\rm{ = }}\frac{{{{\rm{P}}_{\rm{2}}}{{\rm{V}}_{\rm{2}}}}}{{{{\rm{T}}_{\rm{2}}}}}\)

where,

\({{\rm{V}}_{\rm{1}}}{\rm{,}}{{\rm{V}}_{\rm{2}}}{\rm{ = }}\)Initial and final volumes,

\({{\rm{P}}_{\rm{1}}}{\rm{,}}{{\rm{P}}_{\rm{2}}}{\rm{ = }}\)Initial and final pressures, and

\({{\rm{T}}_{\rm{1}}}{\rm{,}}{{\rm{T}}_{\rm{2}}}{\rm{ = }}\)Initial and final absolute temperatures.

04

Evaluating final volume

However, the temperatures provided are in degrees Celsius andnot kelvins (absolute scale).As a result, we must convert temperatures from degrees Celsius to kelvins.

We have\({{\rm{0}}^{\rm{^\circ }}}{\rm{ = (0) + 273}}{\rm{.15K}}\)

So,

\(\begin{aligned}{}{\rm{2}}{{\rm{5}}^{\rm{^\circ }}}{\rm{ = (25) + 273}}{\rm{.15K}}\\{\rm{ = 298}}{\rm{.15K3}}{{\rm{7}}^{\rm{^\circ }}}\\{\rm{ = (37) + 273}}{\rm{.15K}}\\{\rm{ = 310}}{\rm{.15K}}\end{aligned}\)

So,

Initial volume \(\left( {{{\rm{V}}_{\rm{1}}}} \right){\rm{ = 35}}{\rm{.4\;L}}{\rm{.}}\),

Final volume\(\left( {{{\rm{V}}_{\rm{2}}}} \right){\rm{ = ?}}\;\;\;{\rm{L}}\),

Initial temperature \(\left( {{{\rm{T}}_{\rm{1}}}} \right){\rm{ = 298}}{\rm{.15K}}{\rm{.}}\;\;\;\)

Final temperature \(\left( {{{\rm{T}}_{\rm{2}}}} \right){\rm{ = 310}}{\rm{.15K}}\),

Initial pressure \(\left( {{{\rm{P}}_{\rm{1}}}} \right){\rm{ = 151\;atm}}\), and

Final pressure\(\left( {{{\rm{P}}_{\rm{2}}}} \right){\rm{ = 1 }}atm\).

\(\begin{aligned}{l}{\rm{PV = nRT}}\\\frac{{{{\rm{P}}_{\rm{1}}}{{\rm{V}}_{\rm{1}}}}}{{{{\rm{T}}_{\rm{1}}}}}{\rm{ = }}\frac{{{{\rm{P}}_{\rm{2}}}{{\rm{V}}_{\rm{2}}}}}{{{{\rm{T}}_{\rm{2}}}}}\\\frac{{{\rm{(151) \times (35}}{\rm{.4)}}}}{{{\rm{298}}{\rm{.15}}}}{\rm{ = }}\frac{{{\rm{(1) \times }}\left( {{{\rm{V}}_{\rm{2}}}} \right)}}{{{\rm{310}}{\rm{.15}}}}\\\frac{{{\rm{5345}}{\rm{.4}}}}{{{\rm{298}}{\rm{.15}}}}{\rm{ = }}\frac{{{\rm{(1) \times }}\left( {{{\rm{V}}_{\rm{2}}}} \right)}}{{{\rm{310}}{\rm{.15}}}}\\{\rm{17}}{\rm{.93 = }}\frac{{{\rm{(1) \times }}\left( {{{\rm{V}}_{\rm{2}}}} \right)}}{{{\rm{310}}{\rm{.15}}}}\\{{\rm{V}}_{\rm{2}}}{\rm{ = }}\frac{{{\rm{(17}}{\rm{.93) \times (310}}{\rm{.15)}}}}{{\rm{1}}}\\{{\rm{V}}_{\rm{2}}}{\rm{ = 5560}}{\rm{.54\;L}}{\rm{.}}\end{aligned}\)

Therefore, at normal body temperatures, the volume of an oxygen cylinder is \({\rm{5560}}{\rm{.54\;L}}{\rm{.}}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The volume of an automobile air bag was 66.8 Lwhen inflated at \({{\rm{2}}^{\rm{^\circ }}}{\rm{C}}\)with 77.8 gof nitrogen gas. What was the pressure in the bag in kPa?

Methanol,CH3OH, is produced industrially by the following reaction:

Assuming that the gases behave as ideal gases, find the ratio of the total volume of the reactants to the final volume.

Most mixtures of hydrogen gas with oxygen gas are explosive. However, a mixture that contains less than 3.0 % O2 is not. If enough O2 is added to a cylinder of H2 at 33.2 atm to bring the total pressure to 34.5 atm, is the mixture explosive?

Ethanol, C2H5OH,is produced industrially from ethylene, C2H4, by the following sequence of reactions:

\begin{aligned}{\rm{3}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{+2}}{{\rm{H}}_{\rm{2}}}{\rm{S}}{{\rm{O}}_{\rm{4}}}\to{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{HS}}{{\rm{O}}_{\rm{4}}}{\rm{+(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{{\rm{)}}_{\rm{2}}}{\rm{S}}{{\rm{O}}_{\rm{4}}}\\{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{HS}}{{\rm{O}}_{\rm{4}}}{\rm{ +(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{{\rm{)}}_{\rm{2}}}{\rm{S}}{{\rm{O}}_{\rm{4}}}{\rm{+3}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\to{\rm{3}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{OH + 2}}{{\rm{H}}_{\rm{2}}}{\rm{S}}{{\rm{O}}_{\rm{4}}} \end{aligned}

What volume of ethylene at STP is required to produce 1000 metric tons (1000kg) of ethanol if the overall yield of ethanol is 90.1%?

Question: What volume of \[{{\rm{O}}_2}\] at \[{\rm{STP}}\]is required to oxidize \[8.0\;{\rm{L}}\]of \[{\rm{NO}}\]at \[{\rm{STP}}\]to \[{\rm{N}}{{\rm{O}}_2}\]? What volume of \[{\rm{N}}{{\rm{O}}_2}\]is produced at STP?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free