A \({\rm{36}}{\rm{.0-L}}\)cylinder of a gas used for calibration of blood gas analyzers in medical laboratories contains\({\rm{350 g C}}{{\rm{O}}_2}{\rm{, 805 g }}{{\rm{O}}_2}\), and\({\rm{4,880 g }}{{\rm{N}}_2}\). At \({\rm{25}}\) degrees C, what is the pressure in the cylinder in atmospheres?

Short Answer

Expert verified

The pressure is \({\rm{141}}\) atm.

Step by step solution

01

Definition of pressure

Pressure is defined as the force applied perpendicular to an object's surface per unit area across which that force is diffused. Gauge pressure is the pressure measured in proportion to the ambient pressure. Pressure may be measured in a number of different ways.

02

Calculating pressure in cylinder

We have

\({\rm{PV = nRT}}\)

where,

\({\rm{P = }}\)pressure of the gas.

\({\rm{V = }}\)volume of the gas.

\({\rm{n = }}\)number of moles of the gas.

\({\rm{T = }}\)temperature of the gas.

Ifthe amount of the gas\({\rm{(n)}}\)is in moles (mol),temperature\({\rm{(T)}}\)is in kelvin (K),and pressure\({\rm{(P)}}\)is in atmospheres (atm).

\(\begin{aligned}{}\frac{{\rm{P}}}{{{\rm{RT}}}}{\rm{ = }}\frac{{\rm{n}}}{{\rm{V}}}\\{\rm{P = }}\frac{{{\rm{nRT}}}}{{\rm{V}}}\end{aligned}\)

We are given that

\(\begin{aligned}{}{\rm{Volume (V) = 36L}}{\rm{.}}\\{\rm{Pressure (P) = ? atm}}{\rm{.}}\\{\rm{Temperature (T) = 2}}{{\rm{5}}^{\rm{^\circ }}}{\rm{C}}{\rm{.}}\end{aligned}\)

Converting the temperatures in degree Celsius to kelvin, we have

\({\rm{ We have, }}{{\rm{0}}^{\rm{^\circ }}}{\rm{C = (0) + 273}}{\rm{.15K}}\)

So,\({\rm{2}}{{\rm{5}}^{\rm{^\circ }}}{\rm{C = (25) + 273}}{\rm{.15K = 298}}{\rm{.15K}}\)

Calculating the number of moles of\({\rm{C}}{{\rm{O}}_{\rm{2}}}\):

Atomic weight of Carbon\({\rm{(C) = 12}}\)g

Atomic weight of\({\rm{Oxygen(O) = 16}}\)g.

So, molecular weight of\({\rm{C}}{{\rm{O}}_{\rm{2}}}{\rm{ = 12 + (2) \times (16)}}\)g

\(\begin{aligned}{l}{\rm{ = 12 + 32}}\\{\rm{ = 44 grams}}{\rm{.}}\end{aligned}\)

Molar mass of\({\rm{C}}{{\rm{O}}_{\rm{2}}}{\rm{ = 44}}\frac{{{\rm{ gram }}}}{{{\rm{ mol }}}}\).

i.e.,\({\rm{1}}\)mole of\({\rm{C}}{{\rm{O}}_{\rm{2}}}{\rm{ = 44}}\)grams.

\({{\rm{n}}_{\rm{1}}}\)moles of\({\rm{C}}{{\rm{O}}_{\rm{2}}}{\rm{ = 350}}\)grams.

\({{\rm{n}}_{\rm{1}}}{\rm{ = }}\frac{{{\rm{350}}}}{{{\rm{44}}}}{\rm{ = 7}}{\rm{.9 moles of C}}{{\rm{O}}_{\rm{2}}}\)

Calculating the number of moles of\({{\rm{O}}_{\rm{2}}}\):

Atomic weight of Oxygen\({\rm{(O) = 16}}\)gram.

So, molecular weight of\({{\rm{O}}_{\rm{2}}}{\rm{ = (2) \times (16)}}\)grams.\({\rm{ = 32}}\)grams.

Molar mass of\({{\rm{O}}_{\rm{2}}}{\rm{ = 32}}\frac{{{\rm{ gram }}}}{{{\rm{mol}}}}\).

i.e.\({\rm{1}}\)mole of\({{\rm{O}}_{\rm{2}}}{\rm{ = 32}}\)grams.

\({{\rm{n}}_{\rm{2}}}\)moles of\({{\rm{O}}_{\rm{2}}}{\rm{ = 805}}\)grams.

\({{\rm{n}}_{\rm{2}}}{\rm{ = }}\frac{{{\rm{805}}}}{{{\rm{32}}}}\)

\({\rm{ = 25}}{\rm{.1}}\)moles of\({{\rm{O}}_{\rm{2}}}\)

Calculating no. of moles of\({{\rm{N}}_{\rm{2}}}\)

Atomic weight of Nitrogen\((N) = 14\)gram.

So, molecular weight of\({{\rm{N}}_{\rm{2}}}{\rm{ = (2) \times (14)}}\)grams.\({\rm{ = 28}}\)grams.

Molar mass of\({{\rm{N}}_{\rm{2}}}{\rm{ = 28}}\frac{{{\rm{gram}}}}{{{\rm{mol}}}}{\rm{.}}\)

i.e.\({\rm{1}}\)mole of\({{\rm{N}}_{\rm{2}}}{\rm{ = 32}}\)grams.

\({{\rm{n}}_{\rm{3}}}\)moles of\({{\rm{N}}_{\rm{2}}}{\rm{ = 4880}}\)grams.

\({{\rm{n}}_{\rm{3}}}{\rm{ = }}\frac{{{\rm{4880}}}}{{{\rm{28}}}}{\rm{ = 174}}{\rm{.2 moles of }}{{\rm{N}}_{\rm{2}}}\)

So, we have the ratio as

\({\rm{7}}{\rm{.9C}}{{\rm{O}}_{\rm{2}}}{\rm{:25}}{\rm{.1}}{{\rm{O}}_{\rm{2}}}{\rm{:174}}{\rm{.2\;}}{{\rm{N}}_{\rm{2}}}\)

Total number of moles of gas inside the container\({\rm{(n) = }}{{\rm{n}}_{\rm{1}}}{\rm{ + }}{{\rm{n}}_{\rm{2}}}{\rm{ + }}{{\rm{n}}_{\rm{3}}}\)

\({\rm{ = 7}}{\rm{.9 + 25}}{\rm{.1 + 174}}{\rm{.2}}\)

\({\rm{ = 207}}{\rm{.2}}\)moles

\({\rm{PV = nRT}}\)

\(\begin{aligned}{}{\rm{Pressure (P) = }}\frac{{{\rm{nRT}}}}{{\rm{V}}}\\{\rm{ = }}\frac{{{\rm{(207}}{\rm{.2) \times (0}}{\rm{.08206) \times (298}}{\rm{.15)}}}}{{{\rm{36}}}}\\{\rm{ = }}\frac{{{\rm{5069}}{\rm{.4}}}}{{{\rm{36}}}}\\{\rm{ = 141\;atm}}{\rm{.}}\end{aligned}\)

Therefore, the pressure is \({\rm{141\;atm}}{\rm{.}}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: During the discussion of gaseous diffusion for enriching uranium, it was claimed that \(^{{\rm{235}}}{{\rm{U}}_{\rm{6}}}\) diffuses 0.4% faster than\(^{{\rm{235}}}{{\rm{U}}_{\rm{6}}}\). Show the calculation that supports this value. The molar mass of \(^{{\rm{235}}}{{\rm{U}}_{\rm{6}}}{\rm{ = 235}}{\rm{.043930 + 6 \times 18}}{\rm{.998403 = 349}}{\rm{.034348 g/mol}}\), and the molar mass of \(^{{\rm{238}}}{{\rm{U}}_{\rm{6}}}{\rm{ = 238}}{\rm{.050788 + 6 \times 18}}{\rm{.998403 = 352}}{\rm{.041206 g/mol}}\).

A commercial mercury vapor analyzer can detect, in air, concentrations of gaseous Hg atoms (which are poisonous) as low as 2×10-6mg/L of air. At this concentration, what is the partial pressure of gaseous mercury if the atmospheric pressure is 733 torr at 26 ̊C?

A cylinder of medical oxygen has a volume of \({\rm{35}}{\rm{.4\;L}}\) and contains \({{\rm{O}}_{\rm{2}}}\)at a pressure of \({\rm{151 atm}}\) and a temperature of \({\rm{2}}{{\rm{5}}^{\rm{^\circ }}}{\rm{C}}\). What volume of \({{\rm{O}}_{\rm{2}}}\) does this correspond to at normal body conditions, that is, \({\rm{1 atm}}\)and\({\rm{3}}{{\rm{7}}^{\rm{^\circ }}}{\rm{C}}\)?

In addition to the data found in Figure \({\rm{9}}{\rm{.13}}\), what other information do we need to find the mass of the sample of air used to determine the graph?

How many grams of gas are present in each of the following cases?

(a)0.1L of CO2at 307 torr and \({\rm{2}}{{\rm{6}}^{\rm{^\circ }}}{\rm{C}}\)

(b) 8.75L of C2H4, at 378.3KPa and 483K

(c) \({\rm{221\;mL}}\)of Ar at 0.23 torr and -540C

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free