What volume of oxygen at 423.0 K and a pressure of 127.4 kPa is produced by the decomposition of 129.7g of BaO2 to BaO and O2?

Short Answer

Expert verified

The volume of oxygen produced is V=10.56 L

Step by step solution

01

Determine the Molecular Weights

The balanced equation is as follows –

\[{\rm{2Ba}}{{\rm{O}}_{\rm{2}}} \to {\rm{2BaO + }}{{\rm{O}}_{\rm{2}}}\]

Molecular weight of \[{\rm{Ba}}{{\rm{O}}_{\rm{2}}}{\rm{=AtomicweightofBa+2(Atomic weightofO)}}\]

\begin{aligned}{\rm{=137}}{\rm{.33+2(16)}}\\{\rm{=137}}{\rm{.33+32}}\\{\rm{=169}}{\rm{.33gm}}\end{aligned}

Molecular weight of \[{\rm{BaO = Atomic weight of Ba + Atomic weight of O}}\]

\begin{aligned}{l}{\rm{=137}}{\rm{.33+16}}\\{\rm{=153}}{\rm{.33 gm}}\end{aligned}

Molecular weight of \[{{\rm{O}}_2}{\rm{ = 2(Atomic weight of O)}}\]

\begin{aligned}{\rm{=2(16)}}\\{\rm{ = 32 gm}}\end{aligned}

So, the total moles according to the reaction is –

\begin{aligned}{\rm{2(169}}{\rm{.33)gm}}\to{\rm{2(153}}{\rm{.33)gm+1(32)gm}}\\{\rm{338}}{\rm{.66gmBa}}{{\rm{O}}_{\rm{2}}}\to{\rm{306}}{\rm{.66gmBaO+32gm}}{{\rm{O}}_{\rm{2}}}\end{aligned}

For \[{\rm{129}}{\rm{.7gm Ba}}{{\rm{O}}_{\rm{2}}} \to \frac{{{\rm{(129}}{\rm{.7) \times (32)}}}}{{{\rm{338}}{\rm{.66}}}}{\rm{ gm }}{{\rm{O}}_{\rm{2}}}\]

\begin{aligned}\to\frac{{{\rm{(4150}}{\rm{.4)}}}}{{{\rm{338}}{\rm{.66}}}}{\rm{gm}}{{\rm{O}}_{\rm{2}}}\\\to {\rm{12}}{\rm{.25 gm }}{{\rm{O}}_{\rm{2}}}\end{aligned}

Now, it can be obtained –

\begin{aligned}{\rm{32gmof}}{{\rm{O}}_{\rm{2}}}{\rm{=1moleof}}{{\rm{O}}_{\rm{2}}}\\{\rm{12}}{\rm{.25gmof}}{{\rm{O}}_{\rm{2}}}{\rm{=molesof}}{{\rm{O}}_{\rm{2}}}\\{\rm{=}}\frac{{{\rm{(12}}{\rm{.25)\times(1)}}}}{{{\rm{32}}}}{\rm{molesof}}{{\rm{O}}_{\rm{2}}}\\{\rm{=}}\frac{{{\rm{12}}{\rm{.25}}}}{{{\rm{32}}}}{\rm{molesof}}{{\rm{O}}_{\rm{2}}}\\{\rm{=0}}{\rm{.38 moles of }}{{\rm{O}}_{\rm{2}}}\end{aligned}

02

Finding the Total Volume

The formula for volume is PV=NRT.

If, amount of the gas (n) is in moles, temperature (T) is in Kelvin (K), pressure (P) is in atm.

When n=0.3, P=127.4k Pa, T=423K.

When n=0.3, P=127.4k Pa, T=423K.

Converting Pressure kPa into atm –

1 kPa = 0.0098

127.4kPa = (127.4) ×(0.0098)atm

= 1.25atm

Now calculating the volume

\begin{aligned}{\rm{PV=nRT}}\\{\rm{V=}}\frac{{{\rm{nRT}}}}{{\rm{P}}}\\{\rm{=}}\frac{{{\rm{(0}}{\rm{.38)\times(0}}{\rm{.08206)\times(423)}}}}{{{\rm{1}}{\rm{.25}}}}\\{\rm{=}}\frac{{{\rm{13}}{\rm{.2}}}}{{{\rm{1}}{\rm{.25}}}}\\{\rm{=10}}{\rm{.56\;L}}\end{aligned}

Therefore, the value for volume is obtained as V=10.56 L.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free