One method of analyzing amino acids is the van Slyke method. The characteristic amino groups(-NH2) in protein material are allowed to react with nitrous acid, HNO2, to form N2 gas. From the volume of the gas, the amount of amino acid can be determined. A 0.0604-g sample of a biological sample containing glycine, CH2(NH2)CO2H, was analyzed by the van Slyke method and yielded 3.70mL of N2 collected over water at a pressure of 735 torrs and 29 ̊C. What was the percentage of glycine in the sample?

\[{\rm{C}}{{\rm{H}}_{\rm{2}}}{\rm{(N}}{{\rm{H}}_{\rm{2}}}{\rm{)C}}{{\rm{O}}_{\rm{2}}}{\rm{H+HN}}{{\rm{O}}_{\rm{2}}}\to{\rm{C}}{{\rm{H}}_{\rm{2}}}{\rm{(OH)C}}{{\rm{O}}_{\rm{2}}}{\rm{H+}}{{\rm{H}}_{\rm{2}}}{\rm{O+}}{{\rm{N}}_{\rm{2}}}\]

Short Answer

Expert verified

The percentage of glycine in the sample is 17.22%.

Step by step solution

01

Dalton’s Law

Dalton's law states that the overall pressure exerted in a mixture of non-reacting gases is equal to the sum of the partial pressures of the individual gases.

02

Calculation of number of moles

To calculate the percentage of glycine in the sample, we need to find the mass of glycine in the sample.

\[{\rm{masspercentage=}}\frac{{{\rm{massofglycine}}}}{{{\rm{massofsample}}}}{\rm{ \times 100\% }}\]

According to Dalton's law, the total pressure is the sum of the partial pressures of nitrogen and gaseous water.

\[{{\rm{P}}_{\rm{T}}}{\rm{=}}{{\rm{P}}_{{{\rm{N}}_{\rm{2}}}}}{\rm{+}}{{\rm{P}}_{{{\rm{H}}_{\rm{2}}}{\rm{O}}}}\]

Rearranging the above equation to solve for the pressure of nitrogen gives

\[{{\rm{P}}_{{{\rm{N}}_{\rm{2}}}}}{\rm{=}}{{\rm{P}}_{\rm{T}}}{\rm{-}}{{\rm{P}}_{{{\rm{H}}_{\rm{2}}}{\rm{O}}}}\]

The pressure of water vapor above a sample of liquid water at \[{\rm{2}}{{\rm{9}}^{\rm{^\circ }}}{\rm{C}}\] is \[{\rm{30 torr}}\],

so\[{{\rm{P}}_{{{\rm{N}}_{\rm{2}}}}}{\rm{=735torr-30torr=705 torr}}\]

It is given that

\begin{aligned}{\rm{P=705torr\times}}\frac{{{\rm{1\;atm}}}}{{{\rm{760torr}}}}{\rm{=0}}{\rm{.938\;atm}}\\{\rm{T=2}}{{\rm{9}}^{\rm{^\circ}}}{\rm{C+273=302\;K}}\\{\rm{V=3}}{\rm{.7\;mL=3}}{\rm{.7\times1}}{{\rm{0}}^{{\rm{-3}}}}{\rm{\;L}}\end{aligned}

The number of moles of\[{{\rm{N}}_2}\]formed is

\begin{aligned}{\rm{n=}}\frac{{{\rm{PV}}}}{{{\rm{RT}}}}\\{\rm{=}}\frac{{{\rm{0}}{\rm{.938\;atm\times3}}{\rm{.7\times1}}{{\rm{0}}^{{\rm{-3}}}}{\rm{\;L}}}}{{\left({{\rm{0}}{\rm{.08206\;L\;atm\;mol\;}}{{\rm{K}}^{{\rm{-1}}}}}\right){\rm{\times302\;K}}}}\\{\rm{=1}}{\rm{.4\times1}}{{\rm{0}}^{{\rm{-4}}}}{\rm{\;mol}}\end{aligned}

03

Calculation for percentage of Glycine

The balanced reaction is –

\[{\rm{C}}{{\rm{H}}_{\rm{2}}}\left({{\rm{N}}{{\rm{H}}_{\rm{2}}}}\right){\rm{C}}{{\rm{O}}_{\rm{2}}}{\rm{H+HN}}{{\rm{O}}_{\rm{2}}}\to{\rm{C}}{{\rm{H}}_{\rm{2}}}{\rm{(OH)C}}{{\rm{O}}_{\rm{2}}}{\rm{H+}}{{\rm{H}}_{\rm{2}}}{\rm{O+}}{{\rm{N}}_{\rm{2}}}\]

1 mol of glycine gives 1 mol of N2. The mole ratio is 1:1. The number of moles of glycine reacted to produce1.38×10-4 mol N2 is

\begin{aligned}{\rm{1}}{\rm{.38\times1}}{{\rm{0}}^{{\rm{-4}}}}{\rm{\;mol\times}}\frac{{{\rm{1\;molglycine}}}}{{{\rm{1\;mol}}{{\rm{N}}_{\rm{2}}}}}{\rm{=1}}{\rm{.38\times1}}{{\rm{0}}^{{\rm{-4}}}}{\rm{\;mol}}\\{\rm{Molesofglycinereacted=}}\frac{{{\rm{Massofglycine}}}}{{{\rm{Molarmassofglycine}}}}\\{\rm{Massofglycinereacted=}}\frac{{{\rm{Massofglycine}}}}{{{\rm{Molesofglycine}}}}\\{\rm{=}}\frac{{{\rm{1}}{\rm{.38\times1}}{{\rm{0}}^{{\rm{-4}}}}{\rm{\;mol}}}}{{{\rm{75}}{\rm{.07\;g/mol}}}}\\{\rm{=1}}{\rm{.04\times1}}{{\rm{0}}^{{\rm{-2}}}}{\rm{\;g}}\end{aligned}

Mass percentage of glycine in the sample is

\begin{aligned}{\rm{masspercentage=}}\frac{{{\rm{massofglycine}}}}{{{\rm{massofsample}}}}{\rm{\times100\%}}\\{\rm{=}}\frac{{{\rm{1}}{\rm{.04\times1}}{{\rm{0}}^{{\rm{-2}}}}{\rm{\;g}}}}{{{\rm{0}}{\rm{.0604\;g}}}}{\rm{\times100}}\\{\rm{=17}}{\rm{.22\%}}\end{aligned}

Therefore, the percentage of glycine is 17.22%.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Heavy water, \({{\rm{D}}_{\rm{2}}}{\rm{O}}\) (molar mass\({\rm{ = 20}}{\rm{.03 gmo}}{{\rm{l}}^{{\rm{ - 1}}}}\)), can be separated from ordinary water, \({{\rm{H}}_{\rm{2}}}{\rm{O}}\) (molar mass\({\rm{ = 18}}{\rm{.01}}\)), as a result of the difference in the relative rates of diffusion of the molecules in the gas phase. Calculate the relative rates of diffusion of \({{\rm{H}}_{\rm{2}}}{\rm{O}}\) and \({{\rm{D}}_{\rm{2}}}{\rm{O}}\).

Question: Under which of the following sets of conditions does a real gas behave most like an ideal gas, and for which conditions is a real gas expected to deviate from ideal behaviour? Explain.

(a) high pressure, small volume

(b) high temperature, low pressure

(c) low temperature, high pressure

The chlorofluorocarbon CCl2F2 can be recycled into a different compound by reaction with hydrogen to produce CH2F2(g), a compound useful in chemical manufacturing: CCl2F2 (g) + 4H2 (g)⟶CH2F2 (g) + 2HCl(g)

(a) Outline the steps necessary to answer the following question: What volume of hydrogen at 225 atm and 35.5 °C would be required to react with 1 ton (1.000 × 103 kg) of CCl2F2?

(b) Answer the question

Question: What volume of \[{{\rm{O}}_2}\] at \[{\rm{STP}}\]is required to oxidize \[8.0\;{\rm{L}}\]of \[{\rm{NO}}\]at \[{\rm{STP}}\]to \[{\rm{N}}{{\rm{O}}_2}\]? What volume of \[{\rm{N}}{{\rm{O}}_2}\]is produced at STP?

A cylinder of \({{\bf{O}}_2}\)(g) used in breathing by emphysema patients has a volume of \({\bf{3}}.{\bf{00}}\)L at a pressure of 10.0 atm. If the temperature of the cylinder is \({\bf{28}}.{\bf{0}}{\rm{ }}^\circ {\bf{C}}\), what mass of oxygen is in the cylinder?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free