Chapter 12: Q12.8CYL (page 671)
If the initial concentration of butadiene is 0.0200 M, what is the concentration remaining after 20.0 min?
Short Answer
The concentration remaining after 20.0 min is 0.0196 mol/L.
Chapter 12: Q12.8CYL (page 671)
If the initial concentration of butadiene is 0.0200 M, what is the concentration remaining after 20.0 min?
The concentration remaining after 20.0 min is 0.0196 mol/L.
All the tools & learning materials you need for study success - in one app.
Get started for freeWhat is the half-life for the decomposition of NOCl when the concentration of NOCl is 0.15 M? The rate constant for this second-order reaction is \({\bf{8}}{\bf{.0 \times 1}}{{\bf{0}}^{{\bf{ - 8}}}}\)L/mol/s.
Nitrosyl chloride, NOCl, decomposes to NO and \({\bf{C}}{{\bf{l}}_{\bf{2}}}\).
\({\bf{2NOCl(g)}} \to {\bf{2NO(g) + C}}{{\bf{l}}_{\bf{2}}}{\bf{(g)}}\)
Determine the rate law, the rate constant, and the overall order for this reaction from the following data:
Account for the relationship between the rate of a reaction and its activation energy.
Iodine-131 is a radioactive isotope that is used to diagnose and treat some forms of thyroid cancer. Iodine-131 decays to xenon-131 according to the equation:I-131⟶Xe-131 + electron. The decay is first-order with a rate constant of 0.138 d−1. All radioactive decay is first order. How many days will it take for 90% of the iodine−131 in a 0.500 M solution of this substance to decay to Xe-131?
Given the following reactions and the corresponding rate laws, in which of the reactions might the elementary reaction and the overall reaction be the same?\(\begin{aligned}{\rm{(a) C}}{{\rm{l}}_2}{\rm{ + CO }} \to {\rm{ C}}{{\rm{l}}_2}{\rm{CO}}\\{\rm{rate = }}k{{\rm{(C}}{{\rm{l}}_2}{\rm{)}}^{\frac{3}{2}}}{\rm{(CO)}}\\{\rm{(b) PC}}{{\rm{l}}_3}{\rm{ + C}}{{\rm{l}}_{\rm{2}}}{\rm{ }} \to {\rm{ PC}}{{\rm{l}}_{\rm{5}}}\\{\rm{rate = }}k{\rm{(PC}}{{\rm{l}}_{\rm{3}}}{\rm{) (C}}{{\rm{l}}_{\rm{2}}}{\rm{)}}\\{\rm{(c) 2NO + }}{{\rm{H}}_{\rm{2}}}{\rm{ }} \to {\rm{ }}{{\rm{N}}_{\rm{2}}}{\rm{ + }}{{\rm{H}}_{\rm{2}}}{\rm{O}}\\{\rm{rate = }}k{\rm{(NO)(}}{{\rm{H}}_{\rm{2}}}{\rm{)}}\\{\rm{(d) 2NO + }}{{\rm{O}}_{\rm{2}}}{\rm{ }} \to {\rm{ 2N}}{{\rm{O}}_{\rm{2}}}\\{\rm{rate = }}k{{\rm{(NO)}}^{\rm{2}}}{\rm{(}}{{\rm{O}}_{\rm{2}}}{\rm{)}}\\{\rm{(e) NO + }}{{\rm{O}}_{\rm{3}}}{\rm{ }} \to {\rm{ N}}{{\rm{O}}_{\rm{2}}}{\rm{ + }}{{\rm{O}}_{\rm{2}}}\\{\rm{rate = }}k{\rm{(NO)(}}{{\rm{O}}_{\rm{3}}}{\rm{)}}\end{aligned}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.