Usethe data provided to graphically determine the order and rate constant of the following reaction: \({\bf{S}}{{\bf{O}}_{\bf{2}}}{\bf{C}}{{\bf{l}}_{\bf{2}}} \to {\bf{S}}{{\bf{O}}_{\bf{2}}}{\bf{ + C}}{{\bf{l}}_{\bf{2}}}\)

Time(hr)

0

5.00*\({\bf{1}}{{\bf{0}}^{\bf{3}}}\)

1.00*\({\bf{1}}{{\bf{0}}^{\bf{4}}}\)

1.50*\({\bf{1}}{{\bf{0}}^{\bf{4}}}\)

2.50*\({\bf{1}}{{\bf{0}}^{\bf{4}}}\)

3.00*104

4.00*104

\({\bf{(S}}{{\bf{O}}_{\bf{2}}}{\bf{C}}{{\bf{l}}_{\bf{2}}}{\bf{)}}\)(M)

0.100

0.0896

0.0802

0.0719

0.0577

0.0517

0.0415

Short Answer

Expert verified

The reaction is first order.

The rate constant of the reaction is \({\bf{2}}{\bf{.20 \times 1}}{{\bf{0}}^{{\bf{ - 5}}}}{{\bf{s}}^{{\bf{ - 1}}}}\)

Step by step solution

01

Definition

In first-order kinetics, the rate of reaction is directly proportional to the concentration of reactant.

\({\bf{Rate of reaction}} \propto \left( {{\bf{ concentration of reactant}}} \right)\)

\({\bf{Rate of reaction = K }}\left( {{\bf{concentration of reactant}}} \right)\)

Where K is the rate constant.

The rate constant of a first-order reaction is given as

\(k{\bf{ }} = \frac{{\ln \frac{{{{(P)}_0}}}{{(P)}}}}{t}\)

02

Calculation of rate constant

Time

\({\bf{(S}}{{\bf{O}}_{\bf{2}}}{\bf{C}}{{\bf{l}}_{\bf{2}}}{\bf{)}}\)

ln\({\bf{(S}}{{\bf{O}}_{\bf{2}}}{\bf{C}}{{\bf{l}}_{\bf{2}}}{\bf{)}}\)

0

0.100

-2.302

\({\bf{5 \times 1}}{{\bf{0}}^{\bf{3}}}\)

0.0896

-2.412

\({\bf{1 \times 1}}{{\bf{0}}^{\bf{4}}}\)

0.0802

-2.523

\({\bf{1}}{\bf{.5 \times 1}}{{\bf{0}}^{\bf{4}}}\)

0.0719

-2.632

\({\bf{2}}{\bf{.5 \times 1}}{{\bf{0}}^{\bf{4}}}\)

0.0577

-2.852

\({\bf{3 \times 1}}{{\bf{0}}^{\bf{4}}}\)

0.05174

-2.962

\({\bf{4 \times 1}}{{\bf{0}}^{\bf{4}}}\)

0.0415

-3.18

Now, the slope of the plot is given as

\(\begin{align}Slope &= \frac{{( - 2.412) - ( - 2.302)}}{{(5 \times {{10}^3}) - 0}}\\ &= - 2.20 \times {10^{ - 5}}{s^{ - 1}}\end{align}\)

03

Calculation

The slope of the curve for the variation in the concentration vs time plot is equal to the negative of the rate constant or the reaction.

So,

\(\begin{align}Rate &= - \left( { - 2.20 \times {{10}^{ - 5}}{s^{ - 1}}} \right)\\ &= 2.20 \times {10^{ - 5}}{s^{ - 1}}\end{align}\)

04

Plotting of graph

The plot of ln(P) vs time is a linear plot with a negative slope. This indicates first-order reaction kinetics.

Thus, the reaction is first order, and the rate constant is \({\bf{2}}{\bf{.2 \times 1}}{{\bf{0}}^{{\bf{ - 5}}}}{{\bf{s}}^{{\bf{ - 1}}}}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Both technetium-99 and thallium-201 are used to image heart muscle in patients with suspected heart problems. The half-lives are 6 h and 73 h, respectively. What percent of the radioactivity would remain for each of the isotopes after 2 days (48 h)?

Chemical reactions occur when reactants collide. What are two factors that may prevent a collision from producing a chemical reaction?

Given the following reactions and the corresponding rate laws, in which of the reactions might the elementary reaction and the overall reaction be the same?\(\begin{aligned}{\rm{(a) C}}{{\rm{l}}_2}{\rm{ + CO }} \to {\rm{ C}}{{\rm{l}}_2}{\rm{CO}}\\{\rm{rate = }}k{{\rm{(C}}{{\rm{l}}_2}{\rm{)}}^{\frac{3}{2}}}{\rm{(CO)}}\\{\rm{(b) PC}}{{\rm{l}}_3}{\rm{ + C}}{{\rm{l}}_{\rm{2}}}{\rm{ }} \to {\rm{ PC}}{{\rm{l}}_{\rm{5}}}\\{\rm{rate = }}k{\rm{(PC}}{{\rm{l}}_{\rm{3}}}{\rm{) (C}}{{\rm{l}}_{\rm{2}}}{\rm{)}}\\{\rm{(c) 2NO + }}{{\rm{H}}_{\rm{2}}}{\rm{ }} \to {\rm{ }}{{\rm{N}}_{\rm{2}}}{\rm{ + }}{{\rm{H}}_{\rm{2}}}{\rm{O}}\\{\rm{rate = }}k{\rm{(NO)(}}{{\rm{H}}_{\rm{2}}}{\rm{)}}\\{\rm{(d) 2NO + }}{{\rm{O}}_{\rm{2}}}{\rm{ }} \to {\rm{ 2N}}{{\rm{O}}_{\rm{2}}}\\{\rm{rate = }}k{{\rm{(NO)}}^{\rm{2}}}{\rm{(}}{{\rm{O}}_{\rm{2}}}{\rm{)}}\\{\rm{(e) NO + }}{{\rm{O}}_{\rm{3}}}{\rm{ }} \to {\rm{ N}}{{\rm{O}}_{\rm{2}}}{\rm{ + }}{{\rm{O}}_{\rm{2}}}\\{\rm{rate = }}k{\rm{(NO)(}}{{\rm{O}}_{\rm{3}}}{\rm{)}}\end{aligned}\)

Define these terms: (a) unimolecular reaction (b) bimolecular reaction (c) elementary reaction (d) overall reaction.

When every collision between reactants leads to a reaction, what determines the rate at which the reaction occurs?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free