Write the rate equation for each of the following elementary reactions:

\((a){\text{ }}{O_3}{\text{ }}\underrightarrow {sunlight}{\text{ }}{O_2}{\text{ }} + {\text{ }}O\).

\(\begin{array}\(b){\rm{ }}{O_3}{\rm{ }} + {\rm{ }}Cl{\rm{ }} \to {\rm{ }}{O_2}{\rm{ }} + {\rm{ }}ClO\\(c){\rm{ }}ClO{\rm{ }} + {\rm{ }}O{\rm{ }} \to {\rm{ }}Cl{\rm{ }} + {\rm{ }}{O_2}\\(d){\rm{ }}{O_3}{\rm{ }} + {\rm{ }}NO{\rm{ }} \to {\rm{ }}N{O_2}{\rm{ }} + {\rm{ }}{O_2}\\(e){\rm{ }}N{O_2}{\rm{ }} + {\rm{ }}O{\rm{ }} \to {\rm{ }}NO{\rm{ }} + {\rm{ }}{O_2}\end{array}\)

Short Answer

Expert verified

The rate equations for the following elementary reactions are:

\((a){\text{ }}{O_3}{\text{ }}\underrightarrow {sunlight}{\text{ }}{O_2}{\text{ }} + {\text{ }}O\)

\({\bf{rate = k[}}{{\bf{O}}_{\bf{3}}}{\bf{]}}\)

\(\begin{align}{\bf{(b) }}{{\bf{O}}_{\bf{3}}}{\bf{ + Cl }} \to {\bf{ }}{{\bf{O}}_{\bf{2}}}{\bf{ + ClO}}\\{\bf{rate = k(}}{{\bf{O}}_{\bf{3}}}{\bf{)(Cl)}}\end{align}\)

\(\begin{align}{\bf{(c) ClO + O }} \to {\bf{ Cl + }}{{\bf{O}}_{\bf{2}}}\\{\bf{rate = k(ClO)(O)}}\end{align}\)

\(\begin{align}{\bf{(d) }}{{\bf{O}}_{\bf{3}}}{\bf{ + NO }} \to {\bf{ N}}{{\bf{O}}_{\bf{2}}}{\bf{ + }}{{\bf{O}}_{\bf{2}}}\\{\bf{rate = k(}}{{\bf{O}}_{\bf{3}}}{\bf{)(NO)}}\end{align}\)

\(\begin{align}{\bf{(e) N}}{{\bf{O}}_{\bf{2}}}{\bf{ + O }} \to {\bf{ NO + }}{{\bf{O}}_{\bf{2}}}\\{\bf{rate = k(N}}{{\bf{O}}_{\bf{2}}}{\bf{)(O)}}\end{align}\)

Step by step solution

01

Definition of Rate Equation

The rate equation is the mathematical expression which explains the the relationship between the rate of a chemical reaction and the concentration of its reactants.

\({\bf{rate = k(A}}{{\bf{)}}^{\bf{x}}}{{\bf{(B)}}^{\bf{y}}}{{\bf{(C)}}^{\bf{z}}}.....\)

Where,

(A), (B), and (C) denotes the molar concentrations of reactants.

kis the rate constant.

Exponents m, n, and pare generally positive integers.

02

Rate Equations for the Elementary Reactions    

For the elementary reaction (a), the reaction is first order with respect to \({{\rm{O}}_{\rm{3}}}\), thus the rate equation will be:

\((a){\text{ }}{O_3}{\text{ }}\underrightarrow {sunlight}{\text{ }}{O_2}{\text{ }} + {\text{ }}O\)

\({\bf{rate = k[}}{{\bf{O}}_{\bf{3}}}{\bf{]}}\)

For the elementary reaction (b), the reaction is first order with respect to\({{\rm{O}}_{\rm{3}}}\) and \({\rm{Cl}}\)thus the rate equation will be:

\(\begin{align}{\bf{(b) }}{{\bf{O}}_{\bf{3}}}{\bf{ + Cl }} \to {\bf{ }}{{\bf{O}}_{\bf{2}}}{\bf{ + ClO}}\\{\bf{rate = k(}}{{\bf{O}}_{\bf{3}}}{\bf{)(Cl)}}\end{align}\)

For the elementary reaction (c), the reaction is first order with respect to \({\rm{ClO}}\) and \({\rm{O}}\)thus the rate equation will be:

\(\begin{align}{\bf{(c) ClO + O }} \to {\bf{ Cl + }}{{\bf{O}}_{\bf{2}}}\\{\bf{rate = k(ClO)(O)}}\end{align}\)

For the elementary reaction (d), the reaction is first order with respect to \({{\rm{O}}_{\rm{3}}}\) and \({\rm{NO}}\)thus the rate equation will be:

\(\begin{align}{\bf{(d) }}{{\bf{O}}_{\bf{3}}}{\bf{ + NO }} \to {\bf{ N}}{{\bf{O}}_{\bf{2}}}{\bf{ + }}{{\bf{O}}_{\bf{2}}}\\{\bf{rate = k(}}{{\bf{O}}_{\bf{3}}}{\bf{)(NO)}}\end{align}\)

For the elementary reaction (e), the reaction is first order with respect to \({\rm{N}}{{\rm{O}}_2}\) and \({\rm{O}}\)thus the rate equation will be:

\(\begin{align}{\bf{(e) N}}{{\bf{O}}_{\bf{2}}}{\bf{ + O }} \to {\bf{ NO + }}{{\bf{O}}_{\bf{2}}}\\{\bf{rate = k(N}}{{\bf{O}}_{\bf{2}}}{\bf{)(O)}}\end{align}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free