Chapter 21: Q34 E (page 1215)
The isotope \({}^{208}{\rm{Tl}}\) undergoes \({\rm{\beta }}\) decay with a half-life of \({\rm{3}}{\rm{.1 min}}\).
(a) What isotope is produced by the decay?
(b) How long will it take for \({\rm{99}}{\rm{.0\% }}\) of a sample of pure \({}^{208}{\rm{Tl}}\) to decay?
(c) What percentage of a sample of pure \({}^{208}{\rm{Tl}}\) remains un-decayed after \({\rm{1}}{\rm{.0 h}}\)?
Short Answer
(a) The isotope that is produced by the decay is \({}_{82}^{208}{\rm{Pb}}\).
(b) The time taken for\({\rm{99\% }}\)of a sample of pure\({}^{{\rm{208}}}{\rm{Tl}}\)to decay is\({\rm{20}}{\rm{.9\;min}}\).
(c) The percentage of a sample of pure \({}^{{\rm{208}}}{\rm{Tl}}\) that remains un-decayed after \({\rm{1}}{\rm{.0 hr}}\)is \({\rm{1}}{\rm{.8}} \cdot {\rm{1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{\% }}\).