If \({\rm{1}}{\rm{.000 g}}\) of \({}_{{\rm{88}}}^{{\rm{226}}}{\rm{Ra}}\) produces \({\rm{0}}{\rm{.0001 mL}}\) of the gas \({}_{{\rm{88}}}^{{\rm{222}}}{\rm{Rn}}\) at \({\rm{STP}}\) (standard temperature and pressure) in \({\rm{24 h}}\), what is the half-life of \({}^{{\rm{226}}}{\rm{Ra}}\) in years?

Short Answer

Expert verified

The half-life of \({}_{{\rm{88}}}^{{\rm{226}}}{\rm{Ra}}\) in years is infinite.

Step by step solution

01

Concept Introduction

There is a simple formula to calculate the ratio of the amount of the substance –

\(\left( {\frac{{\rm{n}}}{{{{\rm{n}}_{\rm{1}}}}}} \right){\rm{ = }}{\left( {\frac{{\rm{1}}}{{\rm{2}}}} \right)^{\frac{{\rm{t}}}{{{{\rm{t}}_{{\rm{1/2}}}}}}}}\)

Where\(\frac{{\rm{n}}}{{{{\rm{n}}_{\rm{1}}}}}\)is the ratio of the amount of the substance left to the amount of the substance initially present,\({{\rm{t}}_{{\rm{1/2}}}}\)is the half-life of the substance, and\({\rm{t}}\)is the time after which the ratio is determined.

But first, get the number of moles:

\({{\rm{n}}_{\rm{2}}}{\rm{ = }}\frac{{{\rm{volume}}}}{{{\rm{molar volume}}}}\)

02

Calculation for Ratio

The volume of\({\rm{1}}{\rm{.0\;mole}}\)of the gas is\({\rm{22400\;mL}}\).

\(\begin{array}{l}{{\rm{n}}_{\rm{2}}}{\rm{ = 0}}{\rm{.00001\;mL}} \cdot \frac{{{\rm{1\;mol}}}}{{{\rm{22400\;mL}}}}\\{{\rm{n}}_{\rm{2}}}{\rm{ = 4}}{\rm{.46 \times 1}}{{\rm{0}}^{{\rm{ - 9}}}}{\rm{\;mol}}\end{array}\)

The molar mass of\(Ra\)is\({\rm{226 g mo}}{{\rm{l}}^{{\rm{ - 1}}}}\). From that, we can get\({{\rm{n}}_{\rm{1}}}\).

\(\begin{array}{l}{{\rm{n}}_{\rm{1}}}{\rm{ = }}\frac{{\rm{m}}}{{\rm{M}}}\\{{\rm{n}}_{\rm{1}}}{\rm{ = }}\frac{{{\rm{1}}{\rm{.000\;g}}}}{{{\rm{226gmo}}{{\rm{l}}^{{\rm{ - 1}}}}}}\\{{\rm{n}}_{\rm{1}}}{\rm{ = 4}}{\rm{.42}} \cdot {\rm{1}}{{\rm{0}}^{{\rm{ - 3}}}}{\rm{\;mol}}\end{array}\)

\(\begin{array}{l}{\rm{n = }}{{\rm{n}}_{\rm{1}}}{\rm{ - }}{{\rm{n}}_{\rm{2}}}\\{\rm{n = 4}}{\rm{.42}} \cdot {\rm{1}}{{\rm{0}}^{{\rm{ - 3}}}}{\rm{\;mol - 4}}{\rm{.46}} \cdot {\rm{1}}{{\rm{0}}^{{\rm{ - 9}}}}{\rm{\;mol}}\\{\rm{n = 4}}{\rm{.42}} \cdot {\rm{1}}{{\rm{0}}^{{\rm{ - 3}}}}{\rm{\;mol}}\end{array}\)

From the first formula, the ratio is:

\(\frac{{\rm{n}}}{{{{\rm{n}}_{\rm{1}}}}}{\rm{ = }}\frac{{{\rm{4}}{\rm{.42}} \cdot {\rm{1}}{{\rm{0}}^{{\rm{ - 3}}}}{\rm{\;mol}}}}{{{\rm{4}}{\rm{.42}} \cdot {\rm{1}}{{\rm{0}}^{{\rm{ - 3}}}}{\rm{\;mol}}}}{\rm{ = 1}}\)

03

Calculating the Half-Life

Substituting the values into the formula :

\(\begin{array}{c}\left( {\frac{{\rm{n}}}{{{{\rm{n}}_{\rm{1}}}}}} \right){\rm{ = }}{\left( {\frac{{\rm{1}}}{{\rm{2}}}} \right)^{\frac{{\rm{t}}}{{{{\rm{t}}_{{\rm{1/2}}}}}}}}\\{\rm{1 = }}{\left( {\frac{{\rm{1}}}{{\rm{2}}}} \right)^{\frac{{\rm{t}}}{{{{\rm{t}}_{{\rm{1/2}}}}}}}}\end{array}\)

The value for time is\({\rm{24 h}}\):

\(\begin{array}{c}{\rm{1 = }}{\left( {\frac{{\rm{1}}}{{\rm{2}}}} \right)^{\frac{{{\rm{24h}}}}{{{{\rm{t}}_{{\rm{1/2}}}}}}}}\\{\rm{log1 = log}}{\left( {\frac{{\rm{1}}}{{\rm{2}}}} \right)^{\frac{{{\rm{24h}}}}{{{{\rm{t}}_{{\rm{1/2}}}}}}}}\\{\rm{log1 = }}\frac{{{\rm{24\;h}}}}{{{{\rm{t}}_{{\rm{1/2}}}}}}{\rm{log}}\left( {\frac{{\rm{1}}}{{\rm{2}}}} \right)\\\frac{{{\rm{log1}}}}{{{\rm{log}}\left( {\frac{{\rm{1}}}{{\rm{2}}}} \right)}}{\rm{ = }}\frac{{{\rm{24\;h}}}}{{{{\rm{t}}_{{\rm{1/2}}}}}}\end{array}\)

And if\(\log 1\)is divided by\({\rm{log(1/2)}}\), it gives\({\rm{0}}\).

Therefore, the value of the half-life is infinite.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free