A\({}_{\rm{4}}^{\rm{7}}{\rm{Be}}\) atom (mass\({\rm{ = 7}}{\rm{.0169 amu}}\)) decays into a\({}_{\rm{3}}^{\rm{7}}{\rm{Li}}\) atom (mass\({\rm{ = 7}}{\rm{.0160 amu}}\)) by electron capture. How much energy (in millions of electron volts, \({\rm{MeV}}\)) is produced by this reaction?

Short Answer

Expert verified

The energy produced by the reaction \(_{\rm{4}}^{\rm{7}}{\rm{Be + }}_{{\rm{ - 1}}}^{\rm{0}}{\rm{e}} \to _{\rm{3}}^{\rm{7}}{\rm{Li}}\)is \({\rm{1}}{\rm{.297 MeV}}\).

Step by step solution

01

Concept Introduction

Radioactive decay is known as the process of an unstable atomic nucleus losing energy through radiation. The term "radioactive" refers to a substance that contains unstable nuclei. Alpha decay (\({\rm{\alpha - }}\)decay), beta decay (\({\rm{\beta - }}\)decay), and gamma decay (\({\rm{\gamma - }}\)decay) are three of the most prevalent types of decay, all of which entail the emission of one or more particles.

02

Finding the formula

The reaction is

\(_{\rm{4}}^{\rm{7}}{\rm{Be + }}_{{\rm{ - 1}}}^{\rm{0}}{\rm{e}} \to _{\rm{3}}^{\rm{7}}{\rm{Li}}\)

The energy can be obtained using the formula:

\(\begin{array}{c}{\rm{E = m}} \cdot {{\rm{c}}^{\rm{2}}}\\{\rm{m = m( reactants ) - m( products )}}\\{\rm{m = (7}}{\rm{.0169 amu + 0}}{\rm{.0005 amu) - 7}}{\rm{.0160 amu}}\\{\rm{m = 1}}{\rm{.4}} \cdot {\rm{1}}{{\rm{0}}^{{\rm{ - 3}}}}{\rm{amu}}\end{array}\)

Converting\({\rm{amu}}\)in to\({\rm{kg}}\)–

\(\begin{array}{c}{\rm{1 amu = 1}}{\rm{.6605}} \cdot {\rm{1}}{{\rm{0}}^{{\rm{ - 27}}}}{\rm{\;kg}}\\{\rm{m = 1}}{\rm{.4}} \cdot {\rm{1}}{{\rm{0}}^{{\rm{ - 3}}}}{\rm{amu \times 1}}{\rm{.6605}} \cdot {\rm{1}}{{\rm{0}}^{{\rm{ - 27}}}}{\rm{\;kg}} \cdot {\rm{am}}{{\rm{u}}^{{\rm{ - 1}}}}\\{\rm{m = 2}}{\rm{.325}} \cdot {\rm{1}}{{\rm{0}}^{{\rm{ - 30}}}}{\rm{\;kg}}\end{array}\)

03

Calculation for Energy

Substituting the values and calculating:

\(\begin{array}{c}{\rm{E = m}} \cdot {{\rm{c}}^{\rm{2}}}\\{\rm{E = 2}}{\rm{.325}} \cdot {\rm{1}}{{\rm{0}}^{{\rm{ - 30}}}}{\rm{\;kg \times 2}}{\rm{.99}} \cdot {\rm{1}}{{\rm{0}}^{\rm{8}}}{\rm{\;m}}{{\rm{s}}^{{\rm{ - }}{{\rm{1}}^{\rm{2}}}}}\\{\rm{E = 2}}{\rm{.078}} \cdot {\rm{1}}{{\rm{0}}^{{\rm{ - 13}}}}{\rm{\;J}}\end{array}\)

Converting energy from\({\rm{J}}\)to\({\rm{MeV}}\):

\(\begin{array}{c}{\rm{1 MeV = 1}}{\rm{.602}} \cdot {\rm{1}}{{\rm{0}}^{{\rm{ - 13}}}}{\rm{\;J}}\\{\rm{E = 2}}{\rm{.078}} \cdot {\rm{1}}{{\rm{0}}^{{\rm{ - 1}}}}{\rm{13\;J \times }}\frac{{{\rm{1 MeV}}}}{{{\rm{1}}{\rm{.602}} \cdot {\rm{1}}{{\rm{0}}^{{\rm{ - 13}}}}{\rm{\;J}}}}\\{\rm{E = 1}}{\rm{.297 MeV}}\end{array}\)

Therefore, the value for energy is obtained as\({\rm{E = 1}}{\rm{.297 MeV}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Iodine that enters the body is stored in the thyroid gland from which it is released to control growth and metabolism. The thyroid can be imaged if iodine\({\rm{ - 131}}\)is injected into the body. In larger doses, I\({\rm{ - 133}}\)is also used as a means of treating cancer of the thyroid. I\({\rm{ - 131}}\)has a half-life of\({\rm{8}}{\rm{.70}}\)days and decays by\({\rm{\beta - }}\)emission. (a) Write an equation for the decay. (b) How long will it take for\({\rm{95}}{\rm{.0\% }}\)of a dose of I\({\rm{ - 131}}\)to decay?

Question: 13. Complete each of the following equations by adding the missing species:

\(\begin{array}{l}{\bf{(a) }}_{{\bf{13}}}^{{\bf{27}}}{\bf{Al + }}_{\bf{2}}^{\bf{4}}{\bf{Hen }} \to {\bf{? + }}_{\bf{0}}^{\bf{1}}{\bf{n}}\\{\bf{(b) }}_{{\bf{94}}}^{{\bf{239}}}{\bf{Pu + }} \to {\bf{?n}}_{{\bf{96}}}^{{\bf{242}}}{\bf{Cm + }}_{\bf{0}}^{\bf{1}}{\bf{n}}\\{\bf{(c) }}_{{\bf{ 7}}}^{{\bf{14}}}{\bf{\;N + }}_{\bf{2}}^{\bf{4}}{\bf{Hen }} \to {\bf{? + }}_{\bf{1}}^{\bf{1}}{\bf{H}}\\{\bf{(d) }}_{{\bf{92}}}^{{\bf{235}}}{\bf{Un }} \to {\bf{? + }}_{{\bf{55}}}^{{\bf{135}}}{\bf{Cs + 4}}_{\bf{0}}^{\bf{1}}{\bf{n}}\end{array}\)

A \({\rm{1}}{\rm{.00 \times 1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{ - g}}\) sample of nobelium, \({}_{{\rm{102}}}^{{\rm{254}}}{\rm{No}}\), has a half-life of \({\rm{55}}\) seconds after it is formed. What is the percentage of \({}_{{\rm{102}}}^{{\rm{254}}}{\rm{No}}\) remaining at the following times?

(a) \({\rm{5}}{\rm{.0 min}}\)after it forms

(b) \({\rm{1}}{\rm{.0 h}}\)after it forms

Question: Why is electron capture accompanied by the emission of an\({\rm{X - }}\)ray?

Write a balanced equation for each of the following nuclear reactions:

(a) bismuth\({\rm{ - 212}}\)decays into polonium\({\rm{ - 212}}\)

(b) beryllium\({\rm{ - 8}}\)and a positron are produced by the decay of an unstable nucleus

(c) neptunium\({\rm{ - 239}}\)forms from the reaction of uranium\({\rm{ - 238}}\)with a neutron and then spontaneously converts into plutonium\({\rm{ - 239}}\)

(d) strontium\({\rm{ - 90}}\)decays into yttrium\({\rm{ - 90}}\).

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free