Using the data in Appendix G, calculate the standard enthalpy change for each of the following reactions:

(a) Si(s) + 2F2(g)⟶SiF4(g)

(b) 2C(s) + 2H2(g) + O2(g)⟶CH3CO2H(l)

(c) CH4(g) + N2(g)⟶HCN(g) + NH3(g)

(d) CS2(g) + 3Cl2(g)⟶CCl4(g) + S2Cl2(g)

Short Answer

Expert verified

(a) The change in enthalpy is -1615.0kJ.

(b) The change in enthalpy is -484.2kJ.

(c) The change in enthalpy is 164.2kJ.

(d) The change in enthalpy is -232.1 kJ.

Step by step solution

01

Enthalpy of formation of gases in reaction (a)

We have to calculate the standard enthalpy change for each reaction. For that, we have to know the enthalpy of formation for each compound in its respective states.

For the first reaction, we have to know the enthalpy of formation of the silicon, the fluorine, and the SiF4(g).

\(\begin{array}{l}{\bf{The enthalpy of formation of Si(s) is 0 kJ/mol}}{\bf{.}}\\{\bf{The enthalpy of formation of }}{{\bf{F}}_{\bf{2}}}{\bf{(g) is 0 kJ/mol}}{\bf{.}}\\{\bf{The enthalpy of formation of Si}}{{\bf{F}}_{\bf{4}}}{\bf{(g) is - 1615}}{\bf{.0 kJ/mol}}{\bf{.}}\end{array}\)

02

Change in enthalpy in reaction (a)

The reaction is:

\(\begin{array}{l}{\rm{Si(s) + 2}}{{\rm{F}}_{\rm{2}}}{\rm{(g) }} \to {\rm{Si}}{{\rm{F}}_4}{\rm{(g)}}\\\\{\rm{The change in enthalpy of the reaction is calculated below}}{\rm{. }}\\\Delta {\rm H}{\rm{ = }}\sum {\Delta {{\rm H}_{products}} - \sum {\Delta {{\rm H}_{reac\tan ts}}} } \\\Delta {\rm H} = \Delta {{\rm H}_{Si{F_4}(g)}} - (\Delta {{\rm H}_{{F_{\rm{2}}}{\rm{(g)}}}} + \Delta {{\rm H}_{{\rm{Si(s)}}}})\\\Delta {\rm H} = - 1615.0 - (0 + 0){\rm{ kJ}}\\\Delta {\rm H} = - 1615.0{\rm{ kJ}}\end{array}\)

Hence, the change in enthalpy of Si(s) + 2F2(g)⟶SiF4(g) is -1615.0 kJ.

03

Enthalpy of formation of gases in reaction (b)

We have to calculate the standard enthalpy change for each reaction. For that, we have to know the enthalpy of formation for each compound in their respective states.

For the second reaction, we have to know the enthalpy of formation of the carbon, the hydrogen, the oxygen, and the acetic acid.

\(\begin{array}{l}{\bf{The enthalpy of formation of C(s) is 0 kJ/mol}}.\\{\bf{The enthalpy of formation of }}{{\bf{O}}_{\bf{2}}}{\bf{(g) is 0 kJ/mol}}.\\{\bf{The enthalpy of formation of }}{{\bf{H}}_{\bf{2}}}{\bf{(g) is 0 kJ/mol}}.\\{\bf{The enthalpy of formation of C}}{{\bf{H}}_{\bf{3}}}{\bf{C}}{{\bf{O}}_{\bf{2}}}{\bf{H(g) is - 484}}{\bf{.2 kJ/mol}}.\end{array}\)

04

Change in enthalpy in reaction (b)

The reaction is:

\(\begin{array}{l}{\rm{2C(s) + }}{\rm{2}}{{\rm{H}}_{\rm{2}}}{\rm{(g) + }}{{\rm{O}}_{\rm{2}}}{\rm{(g)}} \to {\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{C}}{{\rm{O}}_{\rm{2}}}{\rm{H(g)}}\\\\{\rm{The change in enthalpy of the reaction is calculated below}}{\rm{. }}\\{\rm{\Delta }}{{\rm{{\rm H}}}_{{\rm{reaction}}}}{\rm{ = }}\sum {{\rm{\Delta }}{{\rm{{\rm H}}}_{{\rm{products}}}}} {\rm{ - }}\sum {{\rm{\Delta }}{{\rm{{\rm H}}}_{{\rm{reactants}}}}} \\{\rm{\Delta }}{{\rm{{\rm H}}}_{{\rm{reaction}}}}{\rm{ = }}\left( {{\rm{\Delta }}{{\rm{{\rm H}}}_{{\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{C}}{{\rm{O}}_{\rm{2}}}{\rm{H(g)}}}}} \right){\rm{ - }}\left( {{\rm{2 \times \Delta }}{{\rm{{\rm H}}}_{{\rm{C(s)}}}}{\rm{ + 2 \times \Delta }}{{\rm{{\rm H}}}_{{{\rm{H}}_{\rm{2}}}{\rm{(g)}}}}{\rm{ + \Delta }}{{\rm{{\rm H}}}_{{{\rm{O}}_{\rm{2}}}{\rm{(g)}}}}} \right)\\{\rm{\Delta }}{{\rm{{\rm H}}}_{{\rm{reaction}}}}{\rm{ = - 484}}{\rm{.2 - (0 + 0 + 0)}}\\{\rm{\Delta }}{{\rm{{\rm H}}}_{{\rm{reaction}}}}{\rm{ = - 484}}{\rm{.2 kJ}}{\rm{.}}\end{array}\)

Hence, the change in enthalpy of \(2{\rm{C(s) + }}{\rm{2}}{{\rm{H}}_{\rm{2}}}{\rm{(g)}} + {{\rm{O}}_{\rm{2}}}{\rm{(g)}} \to {\rm{C}}{{\rm{H}}_3}{\rm{C}}{{\rm{O}}_2}{\rm{H(g)}}\) is -484.2 kJ.

05

Enthalpy of formation of gases in reaction (c)

We have to calculate the standard enthalpy change for each reaction. For that, we have to know the enthalpy of formation for each compound in their respective states.

For the third reaction, we have to know the enthalpy of formation of the methane, the nitrogen, the HCN(g), and the ammonia.

\(\begin{array}{l}{\bf{The enthalpy of formation of C}}{{\bf{H}}_{\bf{4}}}{\bf{(g) is - 74}}{\bf{.6 kJ/mol}}{\bf{.}}\\{\bf{The enthalpy of formation of }}{{\bf{N}}_{\bf{2}}}{\bf{(g) is 0 kJ/mol}}{\bf{.}}\\{\bf{The enthalpy of formation of HCN(g) is 135}}{\bf{.5 kJ/mol}}{\bf{.}}\\{\bf{The enthalpy of formation of N}}{{\bf{H}}_{\bf{3}}}{\bf{(g) is - 45}}{\bf{.9 kJ/mol}}{\bf{.}}\end{array}\)

06

Change in enthalpy in reaction (c)

The reaction is:

\(\begin{array}{l}{\rm{C}}{{\rm{H}}_{\rm{4}}}\left( {\rm{g}} \right){\rm{ + }}{{\rm{N}}_{\rm{2}}}\left( {\rm{g}} \right) \to {\rm{HCN}}\left( {\rm{g}} \right){\rm{ + N}}{{\rm{H}}_{\rm{3}}}\left( {\rm{g}} \right)\\\\{\rm{The change in enthalpy of the reaction is calculated below}}{\rm{. }}\\{\rm{\Delta }}{{\rm{{\rm H}}}_{{\rm{reaction}}}}{\rm{ = }}\sum {{\rm{\Delta }}{{\rm{{\rm H}}}_{{\rm{products}}}}} {\rm{ - }}\sum {{\rm{\Delta }}{{\rm{{\rm H}}}_{{\rm{reactants}}}}} \\{\rm{\Delta }}{{\rm{{\rm H}}}_{{\rm{reaction}}}}{\rm{ = }}\left( {{\rm{\Delta }}{{\rm{{\rm H}}}_{{\rm{N}}{{\rm{H}}_{\rm{3}}}{\rm{(g)}}}}{\rm{ + \Delta }}{{\rm{{\rm H}}}_{{\rm{HCN(g)}}}}} \right){\rm{ - }}\left( {{\rm{\Delta }}{{\rm{{\rm H}}}_{{\rm{C}}{{\rm{H}}_{\rm{4}}}{\rm{(g)}}}}{\rm{ + \Delta }}{{\rm{{\rm H}}}_{{{\rm{N}}_{\rm{2}}}{\rm{(g)}}}}} \right)\\{\rm{\Delta }}{{\rm{{\rm H}}}_{{\rm{reaction}}}}{\rm{ = ( - 45}}{\rm{.9 + 135}}{\rm{.5) - ( - 74}}{\rm{.6 + 0)}}\\{\rm{\Delta }}{{\rm{{\rm H}}}_{{\rm{reaction}}}}{\rm{ = (89}}{\rm{.6 + 74}}{\rm{.6) kJ}}\\{\rm{\Delta }}{{\rm{{\rm H}}}_{{\rm{reaction}}}}{\rm{ = 164}}{\rm{.2 kJ}}\end{array}\)

Hence, the change in enthalpy of \({\rm{C}}{{\rm{H}}_{\rm{4}}}\left( {\rm{g}} \right){\rm{ + }}{{\rm{N}}_{\rm{2}}}\left( {\rm{g}} \right) \to {\rm{HCN}}\left( {\rm{g}} \right){\rm{ + N}}{{\rm{H}}_{\rm{3}}}\left( {\rm{g}} \right)\) is 164.2 kJ.

07

Enthalpy of formation of gases in reaction (d)

We have to calculate the standard enthalpy change for each reaction. For that, we have to know the enthalpy of formation for each compound in their respective states.

For the fourthreaction, we have to know the enthalpy of formation of \({\rm{C}}{{\rm{S}}_2}{\rm{(g),}}\) \({\rm{C}}{{\rm{l}}_{\rm{2}}}{\rm{(g),}}\) \({\rm{CC}}{{\rm{l}}_4}{\rm{(g),}}\) and \({{\rm{S}}_2}{\rm{C}}{{\rm{l}}_2}{\rm{(g)}}{\rm{.}}\)

\(\begin{array}{l}{\bf{The enthalpy of formation of C}}{{\bf{S}}_{\bf{2}}}{\bf{(g) is 116}}{\bf{. kJ/mol}}{\bf{.}}\\{\bf{The enthalpy of formation of C}}{{\bf{l}}_{\bf{2}}}{\bf{(g) is 0 kJ/mol}}{\bf{.}}\\{\bf{The enthalpy of formation of CC}}{{\bf{l}}_{\bf{4}}}{\bf{(g) is - 95}}{\bf{.7 kJ/mol}}{\bf{.}}\\{\bf{The enthalpy of formation of }}{{\bf{S}}_{\bf{2}}}{\bf{C}}{{\bf{l}}_{\bf{2}}}{\bf{(g) is - 19}}{\bf{.50 kJ/mol}}{\bf{.}}\end{array}\)

08

Change in enthalpy in reaction (d)

The reaction is:

\(\begin{array}{l}{\rm{C}}{{\rm{S}}_{\rm{2}}}{\rm{(g) + 3C}}{{\rm{l}}_{\rm{2}}}{\rm{(g)}} \to {\rm{CC}}{{\rm{l}}_{\rm{4}}}{\rm{(g) + }}{{\rm{S}}_{\rm{2}}}{\rm{C}}{{\rm{l}}_{\rm{2}}}{\rm{(g)}}\\\\{\rm{The change in enthalpy of the reaction is calculated below}}{\rm{.}}\\{\rm{\Delta }}{{\rm{{\rm H}}}_{{\rm{reaction}}}}{\rm{ = }}\sum {{\rm{\Delta }}{{\rm{{\rm H}}}_{{\rm{products}}}}} {\rm{ - }}\sum {{\rm{\Delta }}{{\rm{{\rm H}}}_{{\rm{reactants}}}}} \\{\rm{\Delta }}{{\rm{{\rm H}}}_{{\rm{reaction}}}}{\rm{ = }}\left( {{\rm{\Delta }}{{\rm{{\rm H}}}_{{{\rm{S}}_{\rm{2}}}{\rm{C}}{{\rm{l}}_{\rm{2}}}{\rm{(g)}}}}{\rm{ + \Delta }}{{\rm{{\rm H}}}_{{\rm{CC}}{{\rm{l}}_{\rm{4}}}{\rm{(g)}}}}} \right){\rm{ - }}\left( {{\rm{\Delta }}{{\rm{{\rm H}}}_{{\rm{C}}{{\rm{S}}_{\rm{2}}}{\rm{(g)}}}}{\rm{ + 3 \times \Delta }}{{\rm{{\rm H}}}_{{\rm{C}}{{\rm{l}}_{\rm{2}}}{\rm{(g)}}}}} \right)\\{\rm{\Delta }}{{\rm{{\rm H}}}_{{\rm{reaction}}}}{\rm{ = ( - 19}}{\rm{.50 - 95}}{\rm{.7) - (116}}{\rm{.9 + 0)}}\\{\rm{\Delta }}{{\rm{{\rm H}}}_{{\rm{reaction}}}}{\rm{ = }}\left( {{\rm{ - 115}}{\rm{.2 - 116}}{\rm{.9}}} \right){\rm{ kJ}}\\{\rm{\Delta }}{{\rm{{\rm H}}}_{{\rm{reaction}}}}{\rm{ = - 232}}{\rm{.1 kJ}}\end{array}\)

Hence, the change in enthalpy of \({\rm{C}}{{\rm{S}}_2}{\rm{(g)}} + 3{\rm{C}}{{\rm{l}}_{\rm{2}}}{\rm{(g)}} \to {\rm{CC}}{{\rm{l}}_4}{\rm{(g)}} + {{\rm{S}}_2}{\rm{C}}{{\rm{l}}_2}{\rm{(g)}}\) is -232.1 kJ.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

When 2.50 g of methane burns in oxygen, 125 kJ of heat is produced. What is the enthalpy of combustion per mole of methane under these conditions?

A sample of 0.562 g of carbon is burned in oxygen in a bomb calorimeter, producing carbon dioxide. Assume both the reactants and products are under standard state conditions, and that the heat released is directly proportional to the enthalpy of combustion of graphite. The temperature of the calorimeter increases from 26.74 °C to 27.93 °C. What is the heat capacity of the calorimeter and its contents?

Calculate the enthalpy of solution (∆H) for the dissolution) per mole of NH4NO3 under the conditions described in example 5.6.

Homes may be heated by pumping hot water through radiators. What mass of water will provide the same amount of heat when cooled from 95.0 to 35.0 °C, as the heat provided when 100 g of steam is cooled from 110 °C to 100°C.

Calculate \[{\bf{\Delta H}}_{{\bf{298 }}}^{\bf{^\circ }}\] for the process \[{\bf{C}}{{\bf{o}}_{\bf{3}}}{{\bf{O}}_{\bf{4}}}\left( {\bf{s}} \right) \to {\bf{3Co}}\left( {\bf{s}} \right){\bf{ + 2}}{{\bf{O}}_{\bf{2}}}\left( {\bf{g}} \right)\]

from the following information:

\[\begin{array}{c}{\bf{Co(s) + }}\frac{{\bf{1}}}{{\bf{2}}}{{\bf{O}}_{\bf{2}}}{\bf{(g)}} \to {\bf{CoO(s) \Delta H}}_{{\bf{298}}}^{\bf{^\circ }}{\bf{ = - 237}}{\bf{.9kJ}}\\{\bf{3CoO(s) + }}\frac{{\bf{1}}}{{\bf{2}}}{{\bf{O}}_{\bf{2}}}{\bf{(g)}} \to {\bf{C}}{{\bf{o}}_{\bf{3}}}{{\bf{O}}_{\bf{4}}}{\bf{(s) \Delta H}}_{{\bf{298}}}^{\bf{^\circ }}{\bf{ = - 177}}{\bf{.5kJ}}\end{array}\]

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free