Ethanol, \({{\bf{C}}_{\bf{2}}}{{\bf{H}}_{\bf{5}}}{\bf{OH}}\), is used as a fuel for motor vehicles, particularly in Brazil.

(a) Write the balanced equation for the combustion of ethanol to CO2(g) and H2O(g), and, using the data in Appendix G, calculate the enthalpy of combustion of 1 mole of ethanol.

(b) The density of ethanol is 0.7893 g/ml. Calculate the enthalpy of combustion of exactly 1 L of ethanol.

(c) Assuming that an automobile’s mileage is directly proportional to the heat of combustion of the fuel, calculate how much farther an automobile could be expected to travel on 1 L of gasoline than on 1 L of ethanol. Assume that gasoline has the heat of combustion and the density of n–octane, \({{\bf{C}}_{\bf{8}}}{{\bf{H}}_{{\bf{18}}}}\) (ΔHf=

- 208.4 kJ/mol; density = 0.7025 g/mL).

Short Answer

Expert verified
  1. The enthalpy of combustion of ethanol is -1234.88 kJ.
  2. Enthalpy of combustion of ethanol for 1 L is equal to -21157.6515 kJ.
  3. An automobile that can travel further on gasoline concerning ethanol will be 1.48times.

Step by step solution

01

Data required

The amount of heat released when a combustible substance gets burned in the presence of oxygen is called the enthalpy of combustion.

We have to write the balanced equation for the combustion of ethanol and calculate the enthalpy of combustion of 1 mol of ethanol.

02

(a) Enthalpy of combustion of ethanol

\(\begin{array}{l}{\rm{Balanced chemical reaction:}}\\{{\bf{C}}_{\bf{2}}}{{\bf{H}}_{\bf{5}}}{\bf{OH(l) + }}{\bf{3}}{{\bf{O}}_{\bf{2}}}{\bf{(g)}} \to {\bf{2C}}{{\bf{O}}_{\bf{2}}}{\bf{(g)}}{\bf{ + }}{\bf{3}}{{\bf{H}}_{\bf{2}}}{\bf{O(g)}}\\\\{\rm{Enthalpy chnage in the reaction, }}\\{\rm{\Delta }}{{\rm{H}}_{{\rm{reaction}}}}{\rm{ = }}\sum {{\rm{\Delta }}{{\rm{H}}_{{\rm{products}}}}} {\rm{ - }}\sum {{\rm{\Delta }}{{\rm{H}}_{{\rm{reactants}}}}} \\{\rm{\Delta }}{{\rm{H}}_{{\rm{reaction}}}}{\rm{ = }}\left( {{\rm{2 \times \Delta }}{{\rm{H}}_{{\rm{C}}{{\rm{O}}_{\rm{2}}}{\rm{(g)}}}}{\rm{ + 3 \times \Delta }}{{\rm{H}}_{{{\rm{H}}_{\rm{2}}}{\rm{O(g)}}}}} \right){\rm{ - }}\left( {{\rm{\Delta }}{{\rm{H}}_{{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{OH(l)}}}}{\rm{ + 3 \times \Delta }}{{\rm{H}}_{{{\rm{O}}_{\rm{2}}}{\rm{(g) }}}}} \right)\\{\rm{\Delta }}{{\rm{H}}_{{\rm{reaction}}}}{\rm{ = }}\left( {{\rm{2 \times - 393}}{\rm{.51 - 3 \times 241}}{\rm{.82}}} \right){\rm{ - ( - 277}}{\rm{.6 + 0)}}\\{\rm{\Delta }}{{\rm{H}}_{{\rm{reaction}}}}{\rm{ = }}\left( {{\rm{ - 1512}}{\rm{.48 + 277}}{\rm{.6}}} \right){\rm{ kJ}}\\{\rm{\Delta }}{{\rm{H}}_{{\rm{reaction}}}}{\rm{ = - 1234}}{\rm{.88 kJ}}\end{array}\)

Hence, the enthalpy of combustion of ethanol is-1234.88 kJ.

03

Data required

On combustion of one mole of ethanol, the amount of heat produced is -1234.88 kJ.

The density of ethanol is 0.7893 g/mL.

So, the mass of 1 L ethanol will be = \(0.7893{\rm{ g/ml }} \times {\rm{1000 ml = 789}}{\rm{.3 g}}\)

04

(b) Enthalpy of combustion of ethanol

Hence, the enthalpy of combustion for exactly 1 L of ethanol will be -21157.6515 kJ.

\(\begin{array}{l}{\rm{ = 789}}{\rm{.3 g of }}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{OH(g) \times }}\frac{{{\rm{1 mol of }}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{OH(g)}}}}{{{\rm{46}}{\rm{.068 g of }}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{OH(g)}}}}{\rm{ \times }}\frac{{{\rm{ - 1234}}{\rm{.88 kJ}}}}{{{\rm{1 mol of }}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{OH(g)}}}}\\{\rm{ = }}{\rm{ - 21157}}{\rm{.6515}}\;{\rm{kJ}}\end{array}\)

The enthalpy of combustion of ethanol for 1 L is equal to -21157.6515 kJ.

05

Enthalpy of combustion of gasoline

We have to calculate the enthalpy of combustion for gasoline in terms of per liter.

\(\begin{array}{l}{\rm{Combustion reaction for gasoline, }}\\{{\rm{C}}_{\rm{8}}}{{\rm{H}}_{{\rm{18}}}}{\rm{(g) + }}{\rm{ }}\frac{{27}}{2}{{\rm{O}}_{\rm{2}}}{\rm{(g)}} \to {\rm{8C}}{{\rm{O}}_2}(g) + 9{{\rm{H}}_{\rm{2}}}{\rm{O(g)}}\\\Delta {{\rm H}_{reaction}} = \left( {9 \times \Delta {{\rm H}_{{{\rm{H}}_{\rm{2}}}{\rm{O(g)}}}} + 8 \times \Delta {{\rm H}_{{\rm{C}}{{\rm{O}}_2}(g)}}} \right) - \left( {\Delta {{\rm H}_{{{\rm{C}}_{\rm{8}}}{{\rm{H}}_{{\rm{18}}}}{\rm{(g)}}}} + \frac{{27}}{2} \times \Delta {{\rm H}_{{{\rm{O}}_{\rm{2}}}{\rm{(g)}}}}} \right)\\\Delta {{\rm H}_{reaction}} = (9 \times - 241.82 - 8 \times 393.51) - ( - 208.4 + 0){\rm{ kJ}}\\\Delta {{\rm H}_{reaction}} = - 5324.46 + 208.4{\rm{ kJ}}\\\Delta {{\rm H}_{reaction}} = - 5116.06{\rm{ kJ}}\end{array}\)

06

Amount of heat released

We have to calculate the amount of heat of combustion for 1 L of gasoline.

\(\begin{array}{l}{\rm{Density of gasoline = 0}}{\rm{.7025 g/ml}}\\{\rm{Mass of 1L of gasoline = 702}}{\rm{.5 g}}\\{\rm{702}}{\rm{.5 g of }}{{\rm{C}}_{\rm{8}}}{{\rm{H}}_{{\rm{18}}}}{\rm{(g) \times }}\frac{{{\rm{1 mol of }}{{\rm{C}}_{\rm{8}}}{{\rm{H}}_{{\rm{18}}}}{\rm{(g)}}}}{{{\rm{114}}{\rm{.224 g of }}{{\rm{C}}_{\rm{8}}}{{\rm{H}}_{{\rm{18}}}}{\rm{(g)}}}}{\rm{ \times }}\frac{{{\rm{ - 5116}}{\rm{.06 kJ}}}}{{{\rm{1 mol of }}{{\rm{C}}_{\rm{8}}}{{\rm{H}}_{{\rm{18}}}}{\rm{(g)}}}}\\{\rm{ = }}{\rm{ - 31464}}{\rm{.8}}\;{\rm{kJ}}\end{array}\)

Hence, the amount of heat released on burning 1 L of gasoline will be 31464.8 kJ.

07

(c) Calculation of how far an automobile can travel on gasoline

An automobile can travel 1.48 times further on gasoline than on ethanol,and its calculation is as follows:

\(\frac{{31464.8}}{{21157.7}} = 1.48\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The temperature of the cooling water as it leaves the hot engine of an automobile is 240°F. After it passes through the radiator it has a temperature of 175°F. Calculate the amount of heat transferred from the engine to the surroundings by one gallon of water with a specific heat of 4.184 J/g°C.

A 70.0-g piece of metal at 80.0 °C is placed in 100 g of water at 22.0 °C contained in a calorimeter like that shown in Figure 5.12. The metal and water come to the same temperature at 24.6 °C. How much heat did the metal give up to the water? What is the specific heat of the metal?

A sample of 0.562 g of carbon is burned in oxygen in a bomb calorimeter, producing carbon dioxide. Assume both the reactants and products are under standard state conditions, and that the heat released is directly proportional to the enthalpy of combustion of graphite. The temperature of the calorimeter increases from 26.74 °C to 27.93 °C. What is the heat capacity of the calorimeter and its contents?

When 50.0g of 0.200M NaCl(aq) at 24.1˚C is added to 100.0g of 0.100M AgNO3(aq) at 24.1˚C in a calorimeter, the temperature rises to 25.2˚C as AgCl(s) forms. Assuming the specific heat of the solution and products is 4.20J/g˚C, calculate the approximate amount of heat in joules produced.

A pint of premium ice cream can contain 1100 Calories. What mass of fat, in grams and pounds, must be produced in the body to store an extra 1.1 × 103 Calories if the average number of Calories for fat is 9.1 Calories/g?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free