Balance the following reactions and write the reactions using cell notation. Ignore any inert electrodes, as they are never part of the half-reactions.

(a) \({\rm{Al}}(s) + {\rm{Z}}{{\rm{r}}^{4 + }}(aq) \to {\rm{A}}{{\rm{l}}^{3 + }}(aq) + {\rm{Zr}}(s)\)

(b) \({\rm{A}}{{\rm{g}}^ + }(aq) + {\rm{NO}}(g) \to {\rm{Ag}}(s) + {\rm{N}}{{\rm{O}}_3}^ - (aq)\)(acidic solution)

(c) \({\rm{Si}}{{\rm{O}}_3}^{2 - }(aq) + {\rm{Mg}}(s) \to {\rm{Si}}(s) + {\rm{Mg}}{({\rm{OH}})_2}(s)\)(basic solution)

(d) \({\rm{Cl}}{{\rm{O}}_3}^ - (aq) + {\rm{Mn}}{{\rm{O}}_2}(s) \to {\rm{C}}{{\rm{l}}^ - }(aq) + {\rm{Mn}}{{\rm{O}}_4}^ - (aq)\)(basic solution

Short Answer

Expert verified
  1. The balance reaction is \(4{\rm{Al}}({\rm{s}}) + 3{\rm{Z}}{{\rm{r}}^{4 + }}(aq) \to 4{\rm{A}}{{\rm{l}}^{3 + }}(aq) + 3{\rm{Zr}}({\rm{s}})\)
  2. The overall reaction is \(3{\rm{A}}{{\rm{g}}^ + }({\rm{aq}}) + {\rm{NO}}({\rm{g}}) + 2{{\rm{H}}_2}{\rm{O}}({\rm{l}}) \to 3{\rm{Ag}}(s) + {\rm{NO}}_3^ - ({\rm{aq}}) + 4{{\rm{H}}^ + }(aq)\)
  3. The overall reaction is \({\rm{Si}}{{\rm{O}}_3}^{2 - }(aq) + 3{{\rm{H}}_2}{\rm{O}}({\rm{l}}) + 2{\rm{Mg}}({\rm{s}}) \to {\rm{Si}}({\rm{s}}) + 2{\rm{Mg}}{({\rm{OH}})_2}(\;{\rm{s}}) + 2{\rm{O}}{{\rm{H}}^ - }\).
  4. The overall reaction is\(2{\rm{Mn}}{{\rm{O}}_2}(\;{\rm{s}}) + {\rm{Cl}}{{\rm{O}}_{{3^ - }}}(aq) + 2{\rm{O}}{{\rm{H}}^ - }({\rm{aq}}) \to 2{\rm{MnO}}_4^ - (aq) + {\rm{C}}{{\rm{l}}^ - }({\rm{aq}}) + {{\rm{H}}_2}{\rm{O}}(l)\)

Step by step solution

01

Define oxidation and reduction

  • The oxidation-reduction reaction is also known as aredox reaction. In this reaction, one reactant is oxidized and other is reduced. In balancing an oxidation-reduction reaction, they must be first divided into two half reactions: one is oxidation reaction and other is reduction reaction.
  • The balancing of redox reaction is complicated as compared to simple balancing. It is necessary to determine the half reactions of reactants undergoing oxidation and reduction. On adding the two half reactions, net total equation can be obtained. This method of balancing redox reaction is known ashalf equation method.
02

a) Determine balanced reaction for each pair of half reactions in an acidic solution.  

The balance reaction is \(4{\rm{Al}}({\rm{s}}) + 3{\rm{Z}}{{\rm{r}}^{4 + }}(aq) \to 4{\rm{A}}{{\rm{l}}^{3 + }}(aq) + 3{\rm{Zr}}({\rm{s}})\)

Consider the following equations:

Anode (Oxidation): \(4 \times \left( {{\rm{Al}}({\rm{s}}) \to {\rm{A}}{{\rm{l}}^{3 + }}(aq) + 3{e^ - }} \right)\)

Cathode (Reduction) : \(3 \times \left( {{\rm{Z}}{{\rm{r}}^{4 + }}({\rm{aq}}) + 4{e^ - } \to {\rm{Zr}}({\rm{s}})} \right)\)

Overall reaction: \(4{\rm{Al}}({\rm{s}}) + 3{\rm{Z}}{{\rm{r}}^{4 + }}(aq) \to 4{\rm{A}}{{\rm{l}}^{3 + }}(aq) + 3{\rm{Zr}}({\rm{s}})\)

Cell notation: \(Al\left| {A{l^{3 + }}(aq)} \right|Z{r^{4 + }}(aq)\mid Zr\)

03

b) Determine balanced reaction for each pair of half reactions in an acidic solution.

The overall reaction is \(3{\rm{A}}{{\rm{g}}^ + }({\rm{aq}}) + {\rm{NO}}({\rm{g}}) + 2{{\rm{H}}_2}{\rm{O}}({\rm{l}}) \to 3{\rm{Ag}}(s) + {\rm{NO}}_3^ - ({\rm{aq}}) + 4{{\rm{H}}^ + }(aq)\)

Consider the following equations:

Anode (Oxidation): \({\rm{NO}}({\rm{g}}) + 2{{\rm{H}}_2}{\rm{O}}({\rm{l}}) \to {\rm{NO}}_3^ - ({\rm{aq}}) + 4{{\rm{H}}^ + }({\rm{aq}}) + 3{e^ - }\))

Cathode (Reduction) : \(3 \times \left( {{\rm{A}}{{\rm{g}}^ + }(aq) + {e^ - } \to Ag(\;{\rm{s}})} \right)\)

Overall reaction: \(3{\rm{A}}{{\rm{g}}^ + }({\rm{aq}}) + {\rm{NO}}({\rm{g}}) + 2{{\rm{H}}_2}{\rm{O}}\) (l)

\( \to 3{\rm{Ag}}({\rm{s}}) + {\rm{N}}{{\rm{O}}_3}^ - ({\rm{aq}}) + 4{{\rm{H}}^ + }(aq)\)

Cell notation: \({\rm{NO}}\mid {\rm{NO}}_3^ - \)(aq)

04

c) Determine balanced reaction for each pair of half reactions in an acidic solution.

The overall reaction is \({\rm{Si}}{{\rm{O}}_3}^{2 - }(aq) + 3{{\rm{H}}_2}{\rm{O}}({\rm{l}}) + 2{\rm{Mg}}({\rm{s}}) \to {\rm{Si}}({\rm{s}}) + 2{\rm{Mg}}{({\rm{OH}})_2}(\;{\rm{s}}) + 2{\rm{O}}{{\rm{H}}^ - }\).

Anode (Oxidation): \(2{\rm{Mg}}({\rm{s}}) + 4{\rm{O}}{{\rm{H}}^ - }({\rm{aq}}) \to 2{\rm{Mg}}{({\rm{OH}})_2}(\;{\rm{s}}) + 4{e^ - }\)

Cathode (Reduction) \(:{{\mathop{\rm SiO}\nolimits} _3}^{2 - }(aq) + 3{{\rm{H}}_2}{\rm{O}}({\rm{l}}) + 4{e^ - } \to {\rm{Si}}({\rm{s}}) + 6{\rm{O}}{{\rm{H}}^ - }\)

Overall reaction: \({\rm{Si}}{{\rm{O}}_3}^{2 - }(aq) + 3{{\rm{H}}_2}{\rm{O}}({\rm{l}}) + 2{\rm{Mg}}({\rm{s}}) \to {\rm{Si}}({\rm{s}}) + 2{\rm{Mg}}{({\rm{OH}})_2}(\;{\rm{s}})\)

\( + 2{\rm{O}}{{\rm{H}}^ - }\)

05

d) Determine balanced reaction for each pair of half reactions in an acidic solution.

The overall reaction is\(2{\rm{Mn}}{{\rm{O}}_2}(\;{\rm{s}}) + {\rm{Cl}}{{\rm{O}}_{{3^ - }}}(aq) + 2{\rm{O}}{{\rm{H}}^ - }({\rm{aq}}) \to 2{\rm{MnO}}_4^ - (aq) + {\rm{C}}{{\rm{l}}^ - }({\rm{aq}}) + {{\rm{H}}_2}{\rm{O}}(l)\)

Anode (Oxidation): \(2{\rm{Mn}}{{\rm{O}}_2}(\;{\rm{s}}) + 8{\rm{O}}{{\rm{H}}^ - }({\rm{aq}}) \to 2{\rm{MnO}}_4^ - ({\rm{aq}}) + 4{{\rm{H}}_2}{\rm{O}}({\rm{l}}) + 6{e^ - }\)

Cathode (Reduction) : \({\rm{ClO}}_3^ - (aq) + 3{{\rm{H}}_2}{\rm{O}}({\rm{l}}) + 6{e^ - } \to {\rm{C}}{{\rm{l}}^ - }({\rm{s}}) + 6{\rm{O}}{{\rm{H}}^ - }(aq)\)

Overall reaction: \(2{\rm{Mn}}{{\rm{O}}_2}(\;{\rm{s}}) + {\rm{Cl}}{{\rm{O}}_3}^ - (aq) + 2{\rm{O}}{{\rm{H}}^ - }({\rm{aq}})\)

\( \to 2{\rm{MnO}}_4^ - (aq) + {\rm{C}}{{\rm{l}}^ - }({\rm{aq}}) + {{\rm{H}}_2}{\rm{O}}(l)\)

Cell notation: (aq)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Calculate the standard entropy change for the following process:

\({{\bf{H}}_{\bf{2}}}{\bf{(g) + }}{{\bf{C}}_{\bf{2}}}{{\bf{H}}_{\bf{4}}}{\bf{(g)}} \to {{\bf{C}}_{\bf{2}}}{{\bf{H}}_{\bf{6}}}{\bf{(g)}}\)

What happens to \({\bf{\Delta G}}_{{\bf{298}}}^{\bf{^\circ }}\) (becomes more negative or more positive) for the following chemical reactions when the partial pressure of oxygen is increased?

(a) \({\bf{S(s) + }}{{\bf{O}}_{\bf{2}}}{\bf{(g)}} \to {\bf{S}}{{\bf{O}}_{\bf{2}}}{\bf{(g)}}\)

(b) \({\bf{2S}}{{\bf{O}}_{\bf{2}}}{\bf{(g) + }}{{\bf{O}}_{\bf{2}}}{\bf{(g)}} \to {\bf{S}}{{\bf{O}}_{\bf{3}}}{\bf{(g)}}\)

(c) \({\bf{HgO(s)}} \to {\bf{Hg(l) + }}{{\bf{O}}_{\bf{2}}}{\bf{(g)}}\)

Determine the standard enthalpy change, entropy change, and free energy change for the conversion of diamond to graphite. Discuss the spontaneity of the conversion with respect to the enthalpy and entropy changes. Explain why diamond spontaneously changing into graphite is not observed.

Consider the decomposition of red mercury(II) oxide under standard state conditions.

\({\bf{2HgO(s, red )}} \to {\bf{2Hg(l) + }}{{\bf{O}}_{\bf{2}}}{\bf{(g)}}\)

(a) Is the decomposition spontaneous under standard state conditions?

(b) Above what temperature does the reaction become spontaneous?

Popular chemical hand warmers generate heat by the air-oxidation of iron:\({\bf{4Fe(s) + 3}}{{\bf{O}}_{\bf{2}}}{\bf{(g)}} \to {\bf{2F}}{{\bf{e}}_{\bf{2}}}{{\bf{O}}_{\bf{3}}}{\bf{(s)}}\).How does the spontaneity of this process depend upon temperature?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free