The decomposition of sulfuryl chloride, \(\mathrm{SO}_{2} \mathrm{Cl}_{2}\), to
sulfur dioxide and chlorine gases is a first-order reaction.
$$\mathrm{SO}_{2} \mathrm{Cl}_{2}(g) \longrightarrow
\mathrm{SO}_{2}(g)+\mathrm{Cl}_{2}(g)$$
At a certain temperature, the half-life of \(\mathrm{SO}_{2} \mathrm{Cl}_{2}\)
is \(7.5 \times 10^{2} \mathrm{~min}\). Consider a sealed flask with \(122.0
\mathrm{~g}\) of \(\mathrm{SO}_{2} \mathrm{Cl}_{2}\)
(a) How long will it take to reduce the amount of \(\mathrm{SO}_{2}
\mathrm{Cl}_{2}\) in the sealed flask to \(45.0 \mathrm{~g}\) ?
(b) If the decomposition is stopped after \(29.0 \mathrm{~h}\), what volume of
\(\mathrm{Cl}_{2}\) at \(27^{\circ} \mathrm{C}\) and \(1.00\) atm is produced?