Chapter 11: Problem 62
For the reaction $$\mathrm{X}+\mathrm{Y} \longrightarrow \mathrm{R}+\mathrm{Z} \quad \Delta H=+295 \mathrm{~kJ},$$ draw a reaction-energy diagram for the reaction if its activation energy is \(378 \mathrm{~kJ} .\)
Chapter 11: Problem 62
For the reaction $$\mathrm{X}+\mathrm{Y} \longrightarrow \mathrm{R}+\mathrm{Z} \quad \Delta H=+295 \mathrm{~kJ},$$ draw a reaction-energy diagram for the reaction if its activation energy is \(378 \mathrm{~kJ} .\)
All the tools & learning materials you need for study success - in one app.
Get started for freeAt low temperatures, the rate law for the reaction $$\mathrm{CO}(\mathrm{g})+\mathrm{NO}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)+\mathrm{NO}(g)$$ is as follows: rate \(=\) constant \(\times\left[\mathrm{NO}_{2}\right]^{2}\). Which of the following mechanisms is consistent with the rate law? (a) \(\mathrm{CO}+\mathrm{NO}_{2} \longrightarrow \mathrm{CO}_{2}+\mathrm{NO}\) (b) \(2 \mathrm{NO}_{2} \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4} \quad\) (fast) \(\mathrm{N}_{2} \mathrm{O}_{4}+2 \mathrm{CO} \longrightarrow 2 \mathrm{CO}_{2}+2 \mathrm{NO} \quad\) (slow) (c) \(2 \mathrm{NO}_{2} \longrightarrow \mathrm{NO}_{3}+\) NO \(\quad\) (slow) \(\mathrm{NO}_{3}+\mathrm{CO} \longrightarrow \mathrm{NO}_{2}+\mathrm{CO}_{2} \quad\) (fast) (d) \(2 \mathrm{NO}_{2} \longrightarrow 2 \mathrm{NO}+\mathrm{O}_{2} \quad\) (slow) \(\mathrm{O}_{2}+2 \mathrm{CO} \longrightarrow 2 \mathrm{CO}_{2} \quad\) (fast)
For the reaction $$2 \mathrm{H}_{2}(g)+2 \mathrm{NO}(g) \longrightarrow \mathrm{N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)$$ the experimental rate expression is rate \(=k[\mathrm{NO}]^{2} \times\left[\mathrm{H}_{2}\right] .\) The following mechanism is proposed: $$\begin{array}{cc}2 \mathrm{NO} \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{2} & \text { (fast) } \\ \mathrm{N}_{2} \mathrm{O}_{2}+\mathrm{H}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2} \mathrm{O} & \text { (slow) } \\ \mathrm{N}_{2} \mathrm{O}+\mathrm{H}_{2} \longrightarrow \mathrm{N}_{2}+\mathrm{H}_{2} \mathrm{O} & \text { (fast) } \end{array}$$ Is this mechanism consistent with the rate expression?
For the first-order thermal decomposition of ozone $$\mathrm{O}_{3}(g) \longrightarrow \mathrm{O}_{2}(g)+\mathrm{O}(g)$$ \(k=3 \times 10^{-26} \mathrm{~s}^{-1}\) at \(25^{\circ} \mathrm{C}\). What is the half-life for this reaction in years? Comment on the likelihood that this reaction contributes to the depletion of the ozone layer.
Experimental data are listed for the hypothetical reaction $$\mathrm{A}+\mathrm{B} \longrightarrow \mathrm{C}+\mathrm{D}$$ $$\begin{array}{lcccccc}\hline \text { Time (s) } & 0 & 10 & 20 & 30 & 40 & 50 \\\\{[\mathrm{~A}]} & 0.32 & 0.24 & 0.20 & 0.16 & 0.14 & 0.12 \\ \hline\end{array}$$ (a) Plot these data as in Figure \(11.2\). (b) Draw a tangent to the curve to find the instantaneous rate at \(30 \mathrm{~s}\). (c) Find the average rate over the 10 to \(40 \mathrm{~s}\) interval. (d) Compare the instantaneous rate at \(30 \mathrm{~s}\) with the average rate over the thirty-second interval.
Express the rate of the reaction $$2 \mathrm{~N}_{2} \mathrm{H}_{4}(l)+\mathrm{N}_{2} \mathrm{O}_{4}(l) \longrightarrow 3 \mathrm{~N}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g)$$ in terms of (a) \(\Delta\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]\) (b) \(\Delta\left[\mathrm{N}_{2}\right]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.