Write a chemical equation for an equilibrium system that would lead to the following expressions (a-d) for \(K\). (a) \(K=\frac{\left(P_{\mathrm{CO}_{2}}\right)^{3}\left(P_{\mathrm{H}_{2} \mathrm{O}}\right)^{4}}{\left(P_{\mathrm{C}, \mathrm{H}_{4}}\right)\left(P_{\mathrm{O}_{2}}\right)^{5}}\) (b) \(K=\frac{P_{\mathrm{C}_{0} \mathrm{H}_{12}}}{\left(P_{\mathrm{C}, \mathrm{H}_{6}}\right)^{2}}\) (c) \(K=\frac{\left[\mathrm{PO}_{4}^{3-}\right]\left[\mathrm{H}^{+}\right]^{3}}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]}\) (d) \(K=\frac{\left(P_{\mathrm{CO}_{2}}\right)\left(P_{\mathrm{H}_{2} \mathrm{O}}\right)}{\left[\mathrm{CO}_{3}^{2-}\right]\left[\mathrm{H}^{+}\right]^{2}}\)

Short Answer

Expert verified
Question: Based on the given equilibrium expressions, provide the balanced chemical equations for each. a) \(K = \frac{(P_{\mathrm{CO}_{2}})^{3}(P_{\mathrm{H}_{2}\mathrm{O})^{4}}{(P_{\mathrm{C},\mathrm{H}_{4}})(P_{\mathrm{O}_{2}})^{5}}\) b) \(K = \frac{P_{\mathrm{C}_{0}\mathrm{H}_{12}}}{(P_{\mathrm{C},\mathrm{H}_{6}})^2}\) c) \(K = \frac{[\mathrm{PO}_{4}^{3-}][\mathrm{H}^{+}]^3}{[\mathrm{H}_{3}\mathrm{PO}_{4}]}\) d) \(K = \frac{(P_{\mathrm{CO}_{2}})(P_{\mathrm{H}_{2}\mathrm{O})}{[\mathrm{CO}_{3}^{2-}][\mathrm{H}^{+}]^2}\) Answer: a) \(\mathrm{CH_{4}}(g) + 5\,\mathrm{O}_{2}(g) \longleftrightarrow 3\,\mathrm{CO}_{2}(g) + 4\,\mathrm{H}_{2}\mathrm{O}(g)\) b) \(2\,\mathrm{CH}_{6}(g) \longleftrightarrow \mathrm{C}_{2}\mathrm{H}_{12}(g)\) c) \(\mathrm{H}_{3}\mathrm{PO}_{4}(aq) \longleftrightarrow \mathrm{PO}_{4}^{3-}(aq) + 3\,\mathrm{H}^{+}(aq)\) d) \(\mathrm{CO}_{3}^{2-}(aq) + 2\,\mathrm{H}^{+}(aq) \longleftrightarrow \mathrm{CO}_{2}(g) + \mathrm{H}_{2}\mathrm{O}(g)\)

Step by step solution

01

(a) Identifying reactants and products

For expression (a), \(K = \frac{(P_{\mathrm{CO}_{2}})^{3}(P_{\mathrm{H}_{2}\mathrm{O})^{4}}{(P_{\mathrm{C},\mathrm{H}_{4}})(P_{\mathrm{O}_{2}})^{5}}\), we need to find the balanced chemical equation that would result in this expression for the equilibrium constant \(K\).
02

(a) Writing the chemical equation

Based on the equilibrium constant expression, we can write the balanced chemical equation as: \(\mathrm{CH_{4}}(g) + 5\,\mathrm{O}_{2}(g) \longleftrightarrow 3\,\mathrm{CO}_{2}(g) + 4\,\mathrm{H}_{2}\mathrm{O}(g)\)
03

(b) Identifying reactants and products

For expression (b), \(K = \frac{P_{\mathrm{C}_{0}\mathrm{H}_{12}}}{(P_{\mathrm{C},\mathrm{H}_{6}})^2}\), we need to find the balanced chemical equation that would result in this expression for the equilibrium constant (K).
04

(b) Writing the chemical equation

Based on the equilibrium constant expression, we can write the balanced chemical equation as: \(2\,\mathrm{CH}_{6}(g) \longleftrightarrow \mathrm{C}_{2}\mathrm{H}_{12}(g)\)
05

(c) Identifying reactants and products

For expression (c), \(K = \frac{[\mathrm{PO}_{4}^{3-}][\mathrm{H}^{+}]^3}{[\mathrm{H}_{3}\mathrm{PO}_{4}]}\), we need to find the balanced chemical equation that would result in this expression for the equilibrium constant (K).
06

(c) Writing the chemical equation

Based on the equilibrium constant expression, we can write the balanced chemical equation as: \(\mathrm{H}_{3}\mathrm{PO}_{4}(aq) \longleftrightarrow \mathrm{PO}_{4}^{3-}(aq) + 3\,\mathrm{H}^{+}(aq)\)
07

(d) Identifying reactants and products

For expression (d), \(K = \frac{(P_{\mathrm{CO}_{2}})(P_{\mathrm{H}_{2}\mathrm{O})}{[\mathrm{CO}_{3}^{2-}][\mathrm{H}^{+}]^2}\), we need to find the balanced chemical equation that would result in this expression for the equilibrium constant (K).
08

(d) Writing the chemical equation

Based on the equilibrium constant expression, we can write the balanced chemical equation as: \(\mathrm{CO}_{3}^{2-}(aq) + 2\,\mathrm{H}^{+}(aq) \longleftrightarrow \mathrm{CO}_{2}(g) + \mathrm{H}_{2}\mathrm{O}(g)\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

For the system $$\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g)$$ \(K\) is 26 at \(300^{\circ} \mathrm{C}\). In a 5.0-L flask, a gaseous mixture consists of all three gases with partial pressures as follows: \(P_{\mathrm{PCl}_{5}}=0.012 \mathrm{~atm}, P_{\mathrm{Cl}_{2}}=0.45 \mathrm{~atm}\), \(P_{\mathrm{PCl}_{3}}=0.90 \mathrm{~atm} .\) (a) Is the mixture at equilibrium? Explain. (b) If it is not at equilibrium, which way will the system shift to establish equilibrium?

The reaction $$\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons \mathrm{H}_{2}(g)+\mathrm{CO}_{2}(g)$$ has an equilibrium constant of \(1.30\) at \(650^{\circ} \mathrm{C}\). Carbon monoxide and steam both have initial partial pressures of \(0.485 \mathrm{~atm}\), while hydrogen and carbon dioxide start with partial pressures of \(0.159\) atm. (a) Calculate the partial pressure of each gas at equilibrium. (b) Compare the total pressure initially with the total pressure at equilibrium. Would that relation be true of all gaseous systems?

For the system $$\mathrm{SO}_{3}(g) \rightleftharpoons \mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g)$$ at \(1000 \mathrm{~K}, K=0.45 .\) Sulfur trioxide, originally at \(1.00 \mathrm{~atm}\) pressure, partially dissociates to \(\mathrm{SO}_{2}\) and \(\mathrm{O}_{2}\) at \(1000 \mathrm{~K}\). What is its partial pressure at equilibrium?

WEB Nitrogen dioxide can decompose to nitrogen oxide and oxygen. $$2 \mathrm{NO}_{2}(g) \rightleftharpoons 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g)$$ \(K\) is \(0.87\) at a certain temperature. A 5.0-L flask at equilibrium is determined to have a total pressure of \(1.25\) atm and oxygen to have a partial pressure of \(0.515\) atm. Calculate \(P_{\mathrm{NO}}\) and \(P_{\mathrm{NO}}\), at equilibrium.

The following data are for the system $$\mathrm{A}(g) \rightleftharpoons 2 \mathrm{~B}(g)$$ $$\begin{array}{ccccccc}\hline \text { Time (s) } & 0 & 30 & 45 & 60 & 75 & 90 \\\ P_{\mathrm{A}} \text { (atm) } & 0.500 & 0.390 & 0.360 & 0.340 & 0.325 & 0.325 \\\ P_{\text {B }} \text { (atm) } & 0.000 & 0.220 & 0.280 & 0.320 & 0.350 & 0.350 \\\\\hline\end{array}$$ (a) How long does it take the system to reach equilibrium? (b) How does the rate of the forward reaction compare with the rate of the reverse reaction after 45 s? After 90 s?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free