Chapter 13: Problem 15
Calculate \(\left[\mathrm{H}^{+}\right]\) and \(\left[\mathrm{OH}^{-}\right]\) in solutions with the following \(\mathrm{pH}\). (a) \(4.0\) (b) \(8.52\) (c) \(0.00\) (d) \(12.60\)
Chapter 13: Problem 15
Calculate \(\left[\mathrm{H}^{+}\right]\) and \(\left[\mathrm{OH}^{-}\right]\) in solutions with the following \(\mathrm{pH}\). (a) \(4.0\) (b) \(8.52\) (c) \(0.00\) (d) \(12.60\)
All the tools & learning materials you need for study success - in one app.
Get started for freeUsing the Tables in Appendix 1, calculate \(\Delta H\) for the reaction of the following. (a) \(1.00 \mathrm{~L}\) of \(0.100 \mathrm{M} \mathrm{NaOH}\) with \(1.00 \mathrm{~L}\) of \(0.100 \mathrm{M} \mathrm{HCl}\) (b) \(1.00 \mathrm{~L}\) of \(0.100 \mathrm{M} \mathrm{NaOH}\) with \(1.00 \mathrm{~L}\) of \(0.100 \mathrm{M}\) HF, taking the heat of formation of \(\mathrm{HF}(a q)\) to be \(-320.1 \mathrm{~kJ} / \mathrm{mol}\)
Using the Brønsted-Lowry model, write an equation to show why each of the following species produces a basic aqueous solution. (a) \(\mathrm{NH}_{3}\) (b) \(\mathrm{NO}_{2}^{-}\) (c) \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\) (d) \(\mathrm{CO}_{3}{ }^{2-}\) (e) \(\mathrm{F}^{-}\) (f) \(\mathrm{HCO}_{3}^{-}\)
Barbituric acid \(\left(K_{\mathrm{a}}=1.1 \times 10^{-4}\right)\) is used in the manufacture of some sedatives. For a \(0.673 \mathrm{M}\) solution of barbituric acid, calculate (a) \(\left[\mathrm{H}^{+}\right]\) (b) \(\left[\mathrm{OH}^{-}\right]\) (c) \(\mathrm{pH}\) (d) \% ionization
Consider sodium acrylate, \(\mathrm{NaC}_{3} \mathrm{H}_{3} \mathrm{O}_{2} . K_{\mathrm{a}}\) for acrylic acid (its conjugate acid) is \(5.5 \times 10^{-5}\). (a) Write a balanced net ionic equation for the reaction that makes aqueous solutions of sodium acrylate basic. (b) Calculate \(K_{b}\) for the reaction in (a). (c) Find the \(\mathrm{pH}\) of a solution prepared by dissolving \(1.61 \mathrm{~g}\) of \(\mathrm{NaC}_{3} \mathrm{H}_{3} \mathrm{O}_{2}\) in enough water to make \(835 \mathrm{~mL}\) of solution.
Find the \(\mathrm{pH}\) and \(\mathrm{pOH}\) of solutions with the following \(\left[\mathrm{H}^{+}\right]\). Classify each as acidic or basic. (a) \(6.0 \mathrm{M}\) (b) \(0.33 \mathrm{M}\) (c) \(4.6 \times 10^{-8} M\) (d) \(7.2 \times 10^{-14} M\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.