Phthalic acid, \(\mathrm{H}_{2} \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\), is a diprotic acid. It is used to make phenolphthalein indicator. \(K_{\mathrm{al}}=0.0012\), and \(K_{\mathrm{a} 2}=3.9 \times 10^{-6} .\) Calculate the \(\mathrm{pH}\) of a \(2.9 \mathrm{M}\) solution of phthalic acid. Estimate \(\left[\mathrm{HC}_{3} \mathrm{H}_{4} \mathrm{O}_{4}^{-}\right]\) and \(\left[\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}^{2-}\right]\)

Short Answer

Expert verified
Answer: After following the steps to solve for pH, \([\mathrm{HC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}^{-}]\), and \([\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}^{2-}]\), the pH of the solution will be approximately 1.18, with \([\mathrm{HC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}^{-}]\) and \([\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}^{2-}]\) concentrations being approximately 0.0010 M and 2.6 x 10⁻⁷ M, respectively.

Step by step solution

01

Calculate the hydrogen ion concentration

We'll begin by writing the equilibrium expressions for the ionization of phthalic acid. Since it is a diprotic acid, it ionizes in two steps: \(\mathrm{H}_{2} \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}^{-}\) with \(K_{a1}=0.0012\) \(\mathrm{HC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}^{2-}\) with \(K_{a2}=3.9 \times 10^{-6}\) Ignoring \(K_{a2}\) for a moment, we can focus on the \(K_{a1}\) expression: \(K_{a1} =\frac{[\mathrm{H}^{+}][\mathrm{HC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}^{-}]}{[\mathrm{H}_{2} \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}]}\) Let \(x\) be the \(\left[\mathrm{H}^{+}\right]\). Since it is a weak acid, we assume [H+] is equal to \(x\). Also, the initial concentration of phthalic acid is 2.9 M, and the amount dissociated will be as well as \(x\), so: \(0.0012 = \frac{x * x}{2.9-x}\) This equation is a quadratic equation, but given the weak nature of the acid, we can simplify it assuming that \(x\) is much smaller than \(2.9\). Therefore, the equation becomes: \(0.0012 = \frac{x^2}{2.9}\) Now, solve for x.
02

Convert the hydrogen ion concentration into pH

Once we have the hydrogen ion concentration, we can calculate the pH of the solution. The formula for pH is: \(\mathrm{pH} = -\log_{10}[\mathrm{H}^{+}]\) Calculate the pH from the value obtained for \(x\) in step 1.
03

Calculate the concentrations of \(\mathrm{HC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}^{-}\) and \(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}^{2-}\)

Now that we have the \(\left[\mathrm{H}^{+}\right]\), we can calculate the concentrations of the ionized forms of phthalic acid using the equilibrium constant expressions from step 1: \([\mathrm{HC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}^{-}] = \frac{[\mathrm{H}^{+}][\mathrm{H}_{2} \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}]}{K_{a1}}\) \([\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}^{2-}] = \frac{[\mathrm{H}^{+}][\mathrm{HC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}^{-}]}{K_{a2}}\) Find the values of \(\left[\mathrm{HC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}^{-}\right]\) and \(\left[\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}^{2-}\right]\) using the equilibrium constants and \(\left[\mathrm{H}^{+}\right]\) value from step 1.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free