Calculate the \(K_{s p}\) of the following compounds, given their molar solubilities. (a) \(\mathrm{AgCN}, 7.73 \times 10^{-9} \mathrm{M}\) (b) \(\mathrm{Ni}(\mathrm{OH})_{2}, 5.16 \times 10^{-6} \mathrm{M}\) (c) \(\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}, 1.67 \times 10^{-8} M\)

Short Answer

Expert verified
Question: Calculate the solubility product constants (\(K_{sp}\)) for the following compounds using their molar solubilities: (a) AgCN, with a molar solubility of \(7.73 \times 10^{-9}\,\mathrm{M}\), (b) Ni(OH)2, with a molar solubility of \(5.16 \times 10^{-6}\,\mathrm{M}\), and (c) Cu3(PO4)2, with a molar solubility of \(1.67 \times 10^{-8}\,\mathrm{M}\). Answer: The solubility product constants (\(K_{sp}\)) for the given compounds are as follows: - \(K_{sp}\) of AgCN: \(5.97 \times 10^{-17}\,\mathrm{M}\). - \(K_{sp}\) of Ni(OH)2: \(5.49 \times 10^{-16}\,\mathrm{M}\). - \(K_{sp}\) of Cu3(PO4)2: \(3.65 \times 10^{-34}\,\mathrm{M}\).

Step by step solution

01

Write the Dissociation Equations for Each Compound

For each compound, write the balanced chemical equation for the dissociation in water. Here are the dissociation equations for the given compounds: (a) \(\mathrm{AgCN} \rightleftharpoons \mathrm{Ag}^+ + \mathrm{CN}^-\) (b) \(\mathrm{Ni}(\mathrm{OH})_2 \rightleftharpoons \mathrm{Ni}^{2+} + 2\mathrm{OH}^-\) (c) \(\mathrm{Cu}_3\left(\mathrm{PO}_4\right)_2 \rightleftharpoons 3\mathrm{Cu}^{2+} + 2\mathrm{PO}_4^{3-}\)
02

Calculate the \(K_{sp}\) of AgCN

For \(\mathrm{AgCN}\), the dissociation equation is: \(\mathrm{AgCN} \rightleftharpoons \mathrm{Ag}^+ + \mathrm{CN}^-\) Let the molar solubility of AgCN be s. Then, the concentration of Ag+ and CN- ions will also be s. The expression for solubility product (\(K_{sp}\)) will be: \(K_{sp}=[\mathrm{Ag}^+][\mathrm{CN}^-]=s^2.\) Given molar solubility, \(s=7.73\times10^{-9}\,\mathrm{M}.\) Now, we can calculate \(K_{sp}\): \(K_{sp}=(7.73\times10^{-9})^2=5.97\times10^{-17}\).
03

Calculate the \(K_{sp}\) of \(\mathrm{Ni}(\mathrm{OH})_{2}\)

For \(\mathrm{Ni}(\mathrm{OH})_2\), the dissociation equation is: \(\mathrm{Ni}(\mathrm{OH})_2 \rightleftharpoons \mathrm{Ni}^{2+} + 2\mathrm{OH}^-\) Let the molar solubility of Ni(OH)2 be s. Then, the concentration of Ni2+ ions will be s and the concentration of OH- ions will be 2s. The expression for solubility product (\(K_{sp}\)) will be: \(K_{sp}=[\mathrm{Ni}^{2+}][\mathrm{OH}^-]^2=s(2s)^2=4s^3.\) Given molar solubility, \(s=5.16\times10^{-6}\,\mathrm{M}.\) Now, we can calculate \(K_{sp}\): \(K_{sp}=4(5.16\times10^{-6})^3=5.49\times10^{-16}\).
04

Calculate the \(K_{sp}\) of \(\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}\)

For \(\mathrm{Cu}_3\left(\mathrm{PO}_4\right)_2\), the dissociation equation is: \(\mathrm{Cu}_3\left(\mathrm{PO}_4\right)_2 \rightleftharpoons 3\mathrm{Cu}^{2+} + 2\mathrm{PO}_4^{3-}\) Let the molar solubility of Cu3(PO4)2 be s. Then, the concentration of Cu2+ ions will be 3s and the concentration of PO43- ions will be 2s. The expression for solubility product (\(K_{sp}\)) will be: \(K_{sp}=[\mathrm{Cu}^{2+}]^3[\mathrm{PO}_4^{3-}]^2=(3s)^3(2s)^2=108s^5.\) Given molar solubility, \(s=1.67\times10^{-8}\,\mathrm{M}.\) Now, we can calculate \(K_{sp}\): \(K_{sp}=108(1.67\times10^{-8})^5=3.65\times10^{-34}\). In summary: - \(K_{sp}\) of AgCN: \(5.97 \times 10^{-17}\,\mathrm{M}.\) - \(K_{sp}\) of Ni(OH)2: \(5.49 \times 10^{-16}\,\mathrm{M}.\) - \(K_{sp}\) of Cu3(PO4)2: \(3.65 \times 10^{-34}\,\mathrm{M}.\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A solution is prepared by mixing \(35.00 \mathrm{~mL}\) of a \(0.061 \mathrm{M}\) solution of zinc nitrate with \(20.0 \mathrm{~mL}\) of \(\mathrm{KOH}\) with a pH of \(9.00\). Assume that volumes are additive. (a) Will precipitation occur? (b) Calculate \(\left[\mathrm{Zn}^{2+}\right],\left[\mathrm{NO}_{3}^{-}\right],\left[\mathrm{K}^{+}\right]\), and the \(\mathrm{pH}\) after equilibrium is established.

Calculate the molar solubility of gold(I) chloride \(\left(K_{s p}=2.0 \times 10^{-13}\right)\) in \(0.10 \mathrm{M} \mathrm{NaCN}\). The complex ion formed is \(\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}\) with \(K_{\mathrm{f}}=2 \times 10^{38}\). Ignore any other competing equilibrium systems.

The concentrations of various cations in seawater, in moles per liter, are $$ \begin{array}{llllll} \hline \text { Ion } & \mathrm{Na}^{+} & \mathrm{Mg}^{2+} & \mathrm{Ca}^{2+} & \mathrm{A}^{3+} & \mathrm{Fe}^{3+} \\ \text { Molarity }(M) & 0.46 & 0.056 & 0.01 & 4 \times 10^{-7} & 2 \times 10^{-7} \\ \hline \end{array} $$ (a) At what \(\left[\mathrm{OH}^{-}\right]\) does \(\mathrm{Mg}(\mathrm{OH})_{2}\) start to precipitate? (b) At this concentration, will any of the other ions precipitate? (c) If enough \(\mathrm{OH}^{-}\) is added to precipitate \(50 \%\) of the \(\mathrm{Mg}^{2+}\), what percentage of each of the other ions will precipitate? (d) Under the conditions in (c), what mass of precipitate will be ob- tained from one liter of seawater?

Consider a \(1.50-\mathrm{L}\) aqueous solution of \(3.75 \mathrm{M} \mathrm{NH}_{3}\), where \(17.5 \mathrm{~g}\) of \(\mathrm{NH}_{4} \mathrm{Cl}\) is dissolved. To this solution, \(5.00 \mathrm{~g}\) of \(\mathrm{MgCl}_{2}\) is added. (a) What is \(\left[\mathrm{OH}^{-}\right]\) before \(\mathrm{MgCl}_{2}\) is added? (b) Will a precipitate form? (c) What is \(\left[\mathrm{Mg}^{2+}\right]\) after equilibrium is established?

Fill in the blanks in the following table. (a) \(\mathrm{CoCO}_{3}\) (b) \(\mathrm{LaF}_{3}\) (c) \(\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free