Given \(K_{s p}\) and the equilibrium concentration of one ion, calculate the equilibrium concentration of the other ion. (a) cadmium(II) hydroxide: \(K_{\text {sp }}=2.5 \times 10^{-14} ;\left[\mathrm{Cd}^{2+}\right]=1.5 \times 10^{-6} M\) (b) copper(II) arsenate \(\left(\mathrm{Cu}_{3}\left(\mathrm{AsO}_{4}\right)_{2}\right): K_{\mathrm{sp}}=7.6 \times 10^{-36} ;\left[\mathrm{AsO}_{4}^{3-}\right]=\) \(2.4 \times 10^{-4} M\) (c) zinc oxalate: \(K_{s p}=2.7 \times 10^{-8} ;\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]=8.8 \times 10^{-3} M\)

Short Answer

Expert verified
Question: Calculate the equilibrium concentration of ions for (a) hydroxide ions when the equilibrium concentration of cadmium(II) ions is \(1.5 \times 10^{-6} M\) and the \(K_{sp}\) for cadmium(II) hydroxide is \(2.5 \times 10^{-14}\), (b) copper(II) ions when the equilibrium concentration of arsenate ions is \(2.4 \times 10^{-4} M\) and the \(K_{sp}\) for copper(II) arsenate is \(7.6 \times 10^{-36}\), and (c) zinc(II) ions when the equilibrium concentration of oxalate ions is \(8.8 \times 10^{-3} M\) and the \(K_{sp}\) for zinc oxalate is \(2.7 \times 10^{-8}\). Answer: (a) \([\mathrm{OH^-}] = 4.09 \times 10^{-5} M\), (b) \([\mathrm{Cu^{2+}}] = 1.1 \times 10^{-9} M\), (c) \([\mathrm{Zn^{2+}}] = 3.07\times10^{-6} M\)

Step by step solution

01

Write the dissociation reaction

First, write the balanced chemical equation for the dissociation of cadmium(II) hydroxide in water:$$\mathrm{Cd(OH)_{2}(s)} \leftrightharpoons \mathrm{Cd^{2+}(aq)} + 2\mathrm{OH^{-}(aq)}$$
02

Write the expression for Ksp

Next, write the expression for the solubility product constant, \(K_{sp}\):$$K_{\text {sp }}=\left[\mathrm{Cd}^{2+}\right]\left[\mathrm{OH^{-}\right]^{2}$$
03

Substitute the given values and solve

Now we can substitute the given values for \(K_{sp}\) and \([\mathrm{Cd}^{2+}]\), and solve for \([\mathrm{OH^-}]\): $$K_{\text {sp }}=2.5 \times 10^{-14}$$ $$\left[\mathrm{Cd}^{2+}\right]=1.5 \times 10^{-6} M$$ $$2.5 \times 10^{-14} = (1.5 \times 10^{-6})\left[\mathrm{OH^-}\right]^2$$ Divide both sides by \((1.5 \times 10^{-6})\): $$\left[\mathrm{OH^-}\right]^2=1.67 \times 10^{-8}$$ Now, we can take the square root of both sides: $$[\mathrm{OH^-}] = \sqrt{1.67 \times 10^{-8}} = 4.09 \times 10^{-5} M$$ For copper(II) arsenate (Cu3(AsO4)2):
04

Write the dissociation reaction

First, write the balanced chemical equation for the dissociation of copper(II) arsenate in water:$$\mathrm{Cu}_{3}\left(\mathrm{AsO}_{4}\right)_{2}(s) \leftrightharpoons 3\mathrm{Cu^{2+}(aq)} + 2\mathrm{AsO}_{4}^{3-}(aq)$$
05

Write the expression for Ksp

Next, write the expression for the solubility product constant, \(K_{sp}\):$$K_{\text {sp }}=\left[\mathrm{Cu^{2+}}\right]^{3}\left[\mathrm{AsO_{4}^{3-}}\right]^{2}$$
06

Substitute the given values and solve

Now we can substitute the given values for \(K_{sp}\) and \([\mathrm{AsO_{4}^{3-}}]\), and solve for \([\mathrm{Cu^{2+}}]\): $$K_{\text {sp }}=7.6 \times 10^{-36}$$ $$[\mathrm{AsO_{4}^{3-}}]=2.4 \times 10^{-4} M$$ $$7.6 \times 10^{-36} =\left[\mathrm{Cu^{2+}}\right]^{3}(2.4 \times 10^{-4})^2$$ Divide both sides by \({(2.4 \times 10^{-4})^2}\): $$\left[\mathrm{Cu^{2+}}\right]^3 = 1.32 \times 10^{-27}$$ Now, we can take the cube root of both sides: $$[\mathrm{Cu^{2+}}] = \sqrt[3]{1.32 \times 10^{-27}} = 1.1 \times 10^{-9} M$$ For zinc oxalate (ZnC2O4):
07

Write the dissociation reaction

First, write the balanced chemical equation for the dissociation of zinc oxalate in water:$$\mathrm{ZnC}_{2}\mathrm{O}_{4}(s) \leftrightharpoons \mathrm{Zn^{2+}(aq)} + \mathrm{C}_{2}\mathrm{O}_{4}{ }^{2-}(aq)$$
08

Write the expression for Ksp

Next, write the expression for the solubility product constant, \(K_{sp}\):$$K_{\text {sp }}=\left[\mathrm{Zn^{2+}}\right]\left[\mathrm{C}_{2}\mathrm{O}_{4}{ }^{2-}\right]$$
09

Substitute the given values and solve

Now we can substitute the given values for \(K_{sp}\) and \([\mathrm{C}_{2}\mathrm{O}_{4}{ }^{2-}]\), and solve for \([\mathrm{Zn^{2+}}]\): $$K_{\text {sp }}=2.7 \times 10^{-8}$$ $$[\mathrm{C}_{2}\mathrm{O}_{4}{ }^{2-}]=8.8 \times 10^{-3} M$$ $$2.7 \times 10^{-8}=\left[\mathrm{Zn^{2+}}\right](8.8 \times 10^{-3})$$ Divide both sides by \(8.8 \times 10^{-3}\): $$[\mathrm{Zn^{2+}}] = 3.07\times10^{-6} M$$ In conclusion, the equilibrium ion concentrations are as follows: (a) \(\left[\mathrm{OH^{-}}\right]=4.09 \times 10^{-5} M\) (b) \(\left[\mathrm{Cu^{2+}}\right]=1.1 \times 10^{-9} M\) (c) \(\left[\mathrm{Zn^{2+}}\right]=3.07\times10^{-6} M\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Write a net ionic equation for the reaction with \(\mathrm{OH}^{-}\) by which (a) \(\mathrm{Sb}^{3+}\) forms a precipitate. (b) antimony(III) hydroxide dissolves when more \(\mathrm{OH}^{-}\) is added. (c) \(\mathrm{Sb}^{3+}\) forms a complex ion.

What is the solubility of \(\mathrm{CaF}_{2}\) in a buffer solution containing \(0.30 \mathrm{M}\) \(\mathrm{HCHO}_{2}\) and \(0.20 \mathrm{M} \mathrm{NaCHO}_{2}\) ? Hint: Consider the equation $$ \mathrm{CaF}_{2}(s)+2 \mathrm{H}^{+}(a q) \longrightarrow \mathrm{Ca}^{2+}(a q)+2 \mathrm{HF}(a q) $$ and solve the equilibrium problem.

Consider a \(1.50-\mathrm{L}\) aqueous solution of \(3.75 \mathrm{M} \mathrm{NH}_{3}\), where \(17.5 \mathrm{~g}\) of \(\mathrm{NH}_{4} \mathrm{Cl}\) is dissolved. To this solution, \(5.00 \mathrm{~g}\) of \(\mathrm{MgCl}_{2}\) is added. (a) What is \(\left[\mathrm{OH}^{-}\right]\) before \(\mathrm{MgCl}_{2}\) is added? (b) Will a precipitate form? (c) What is \(\left[\mathrm{Mg}^{2+}\right]\) after equilibrium is established?

Write a net ionic equation for the reaction with ammonia by which (a) \(\mathrm{Cu}(\mathrm{OH})_{2}\) dissolves. (b) \(\mathrm{Cd}^{2+}\) forms a complex ion. (c) \(\mathrm{Pb}^{2+}\) forms a precipitate.

Which of the following statements are true? (a) For an insoluble metallic salt, \(K_{\text {sp }}\) is always less than 1 . (b) More \(\mathrm{PbCl}_{2}\) can be dissolved at \(100^{\circ} \mathrm{C}\) than at \(25^{\circ} \mathrm{C}\). One can conclude that dissolving \(\mathrm{PbCl}_{2}\) is an exothermic process. (c) When strips of copper metal are added to a saturated solution of \(\mathrm{Cu}(\mathrm{OH})_{2}\), a precipitate of \(\mathrm{Cu}(\mathrm{OH})_{2}\) can be expected to form because of the common ion effect.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free