Calculate \(\Delta G^{\circ}\) at \(45^{\circ} \mathrm{C}\) for reactions for which (a) \(\Delta H^{\circ}=293 \mathrm{~kJ} ; \Delta S^{\circ}=-695 \mathrm{~J} / \mathrm{K}\) (b) \(\Delta H^{\circ}=-1137 \mathrm{~kJ} ; \Delta S^{\circ}=0.496 \mathrm{~kJ} / \mathrm{K}\) (c) \(\Delta H^{\circ}=-86.6 \mathrm{~kJ} ; \Delta S^{\circ}=-382 \mathrm{~J} / \mathrm{K}\)

Short Answer

Expert verified
Question: Calculate the standard Gibbs free energy change (ΔG°) at 45°C for the following reactions: a) ΔH° = 293 kJ and ΔS° = -695 J/K b) ΔH° = -1137 kJ and ΔS° = 0.496 kJ/K c) ΔH° = -86.6 kJ and ΔS° = -382 J/K Answer: The standard Gibbs free energy changes for the given reactions are: a) ~515.13 kJ, b) ~-1178.38 kJ, and c) ~-5.97 kJ.

Step by step solution

01

Conversion of temperature to Kelvin

Convert 45°C to Kelvin by adding 273.15: \(T = 45\,^{\circ}\mathrm{C} + 273.15 = 318.15\, \mathrm{K}\)
02

Step 2a: Calculate \(\Delta G^{\circ}\) for given values in part (a)

Use the formula, \(\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}\), and given values \(\Delta H^{\circ}=293 \mathrm{~kJ}\) and \(\Delta S^{\circ}=-695 \mathrm{~J} / \mathrm{K}\) for part (a). First, convert \(\Delta S^{\circ}\) to kJ/K, then substitute values and calculate: \(\Delta G^{\circ} = 293\,\mathrm{kJ} - 318.15\,\mathrm{K} \cdot (-695\,\mathrm{J/K} \cdot 10^{-3}\,\mathrm{kJ/J})\) \(\Delta G^{\circ} = 293\,\mathrm{kJ} - 318.15\,\mathrm{K} \cdot (-0.695\,\mathrm{kJ/K})\) \(\Delta G^{\circ} \approx 515.13\,\mathrm{kJ}\) (rounded to two decimal places)
03

Step 2b: Calculate \(\Delta G^{\circ}\) for given values in part (b)

Use the formula, \(\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}\), and given values \(\Delta H^{\circ}=-1137 \mathrm{~kJ}\) and \(\Delta S^{\circ}=0.496 \mathrm{~kJ}/ \mathrm{K}\) for part (b). Substitute values and calculate: \(\Delta G^{\circ} = -1137\,\mathrm{kJ} - 318.15\,\mathrm{K} \cdot (0.496\,\mathrm{kJ/K})\) \(\Delta G^{\circ} \approx -1178.38\,\mathrm{kJ}\) (rounded to two decimal places)
04

Step 2c: Calculate \(\Delta G^{\circ}\) for given values in part (c)

Use the formula, \(\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}\), and given values \(\Delta H^{\circ}=-86.6 \mathrm{~kJ}\) and \(\Delta S^{\circ}=-382 \mathrm{~J} / \mathrm{K}\) for part (c). First, convert \(\Delta S^{\circ}\) to kJ/K, then substitute values and calculate: \(\Delta G^{\circ} = -86.6\,\mathrm{kJ} - 318.15\,\mathrm{K} \cdot (-382\,\mathrm{J/K} \cdot 10^{-3}\,\mathrm{kJ/J})\) \(\Delta G^{\circ} = -86.6\,\mathrm{kJ} - 318.15\,\mathrm{K} \cdot (-0.382\,\mathrm{kJ/K})\) \(\Delta G^{\circ} \approx -5.97\,\mathrm{kJ}\) (rounded to two decimal places) Hence, the standard Gibbs free energy changes for the given reactions are: (a) ~515.13 kJ, (b) ~-1178.38 kJ, and (c) ~-5.97 kJ.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

\(K_{a}\) for acetic acid \(\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)\) at \(25^{\circ} \mathrm{C}\) is \(1.754 \times 10^{-5} .\) At \(50^{\circ} \mathrm{C}, K_{\mathrm{a}}\) is \(1.633 \times 10^{-5}\). Assuming that \(\Delta H^{\circ}\) and \(\Delta S^{\circ}\) are not affected by a change in temperature, calculate \(\Delta S^{\circ}\) for the ionization of acetic acid.

For the reaction $$ \mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \rightleftharpoons 2 \mathrm{HI}(g) $$ \(K=50.0\) at \(721 \mathrm{~K}\) (a) What is \(\Delta G^{\circ}\) at \(721 \mathrm{~K} ?\) (b) What is \(K\) at \(25^{\circ} \mathrm{C}\) ? \(\left(\Delta G_{f}^{\circ} \mathrm{I}_{2}(g)=+19.4 \mathrm{~kJ} / \mathrm{mol}\right.\) )

Consider the reaction $$ \mathrm{N}_{2} \mathrm{O}(g)+\mathrm{NO}_{2}(g) \longrightarrow 3 \mathrm{NO}(g) \quad K=4.4 \times 10^{-19} $$ (a) Calculate \(\Delta G^{\circ}\) for the reaction at \(25^{\circ} \mathrm{C}\). (b) Calculate \(\Delta G_{i}^{\circ}\) for \(\mathrm{N}_{2} \mathrm{O}\) at \(25^{\circ} \mathrm{C}\).

The normal boiling point for ethyl alcohol is \(78.4^{\circ} \mathrm{C} .5^{\circ}\) for \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(g)\) is \(282.7 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}\). At what temperature is the vapor pressure of ethyl alcohol \(357 \mathrm{~mm} \mathrm{Hg} ?\)

I Sodium carbonate, also called "washing soda," can be made by heating sodium hydrogen carbonate: $$ \begin{gathered} 2 \mathrm{NaHCO}_{3}(s) \longrightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(s)+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l) \\ \Delta H^{\circ}=+135.6 \mathrm{~kJ} ; \Delta G^{\circ}=+34.6 \mathrm{~kJ} \text { at } 25^{\circ} \mathrm{C} \end{gathered} $$ (a) Calculate \(\Delta S^{\circ}\) for this reaction. Is the sign reasonable? (b) Calculate \(\Delta G^{\circ}\) at \(0 \mathrm{~K} ;\) at \(1000 \mathrm{~K}\).

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free