Mow by calculation, using Appendix 1, whether dissolving lead(II) chloride $$ \mathrm{PbCl}_{2}(s) \rightleftharpoons \mathrm{Pb}^{2+}(a q)+2 \mathrm{Cl}^{-}(a q) $$ is spontaneous at \(25^{\circ} \mathrm{C}\) (a) when \(\left[\mathrm{Pb}^{2+}\right]=1.0 \mathrm{M} ;\left[\mathrm{Cl}^{-}\right]=2.0 \mathrm{M}\). (b) when \(\left[\mathrm{Pb}^{2+}\right]=1.0 \times 10^{-5} ;\left[\mathrm{Cl}^{-}\right]=2.0 \times 10^{-5} \mathrm{M}\).

Short Answer

Expert verified
Answer: The dissolution of lead(II) chloride is spontaneous in scenario (a) but not spontaneous in scenario (b).

Step by step solution

01

(Step 1: Calculate the reaction quotient Q)

(For each given scenario, the reaction quotient is defined as \(Q=\frac{[\mathrm{Pb}^{2+}][\mathrm{Cl}^-]^2}{[\mathrm{PbCl}_{2}]_{(s)}}\). Since the denominator is a solid, it is not included in the expression. Therefore, \(Q=[\mathrm{Pb}^{2+}][\mathrm{Cl}^-]^2\).)
02

(Step 2: Calculate the standard Gibbs free energy change)

(From Appendix 1, the standard Gibbs free energy change (\(ΔG°\)) for the given reaction is obtained. In this case, \(ΔG°=-27.2 \mathrm{kJ/mol}\).) Now we will calculate the actual Gibbs free energy change for each scenario: #a)#
03

(Step 3a: Substitute the given concentrations into the reaction quotient Q)

(Using the given concentrations for scenario (a): \(\left[\mathrm{Pb}^{2+}\right]=1.0 \mathrm{M}\) and \(\left[\mathrm{Cl}^{-}\right]=2.0 \mathrm{M}\), the reaction quotient Q becomes: \(Q_a=(1.0)(2.0)^2=4.0\).)
04

(Step 4a: Calculate the actual Gibbs free energy change)

(Now we can use the formula for the actual Gibbs free energy change, \(\Delta G=RTln(Q) - \Delta G^\circ\). For this case, we have: \(\Delta G_a=(8.314\times10^{-3}\mathrm{kJ/mol K})(298.15\mathrm{K})(\ln{4})-(-27.2\mathrm{kJ/mol}) \approx{-25.3}\,\mathrm{kJ/mol}\).) Since the actual Gibbs free energy change is negative (\(ΔG_a<0\)), the dissolution of lead(II) chloride is spontaneous in scenario (a). #b)#
05

(Step 3b: Substitute the given concentrations into the reaction quotient Q)

(Using the given concentrations for scenario (b): \(\left[\mathrm{Pb}^{2+}\right]=1.0 \times 10^{-5} \mathrm{M}\) and \(\left[\mathrm{Cl}^{-}\right]=2.0 \times 10^{-5} \mathrm{M}\), the reaction quotient Q becomes: \(Q_b=(1.0 \times 10^{-5})(2.0 \times 10^{-5})^2=8.0 \times 10^{-15}\).)
06

(Step 4b: Calculate the actual Gibbs free energy change)

(Now we can use the formula for the actual Gibbs free energy change, \(\Delta G=RTln(Q) - \Delta G^\circ\). For this case, we have: \(\Delta G_b=(8.314\times10^{-3}\mathrm{kJ/mol K})(298.15\mathrm{K})(\ln(8.0 \times 10^{-15}))-(-27.2\mathrm{kJ/mol}) \approx{19.2}\,\mathrm{kJ/mol}\).) Since the actual Gibbs free energy change is positive (\(ΔG_b>0\)), the dissolution of lead(II) chloride is not spontaneous in scenario (b).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Predict the sign of \(\Delta S^{\circ}\) for each of the following reactions. (a) \(2 \mathrm{Na}(s)+\mathrm{Cl}_{2}(g) \longrightarrow 2 \mathrm{NaCl}(s)\) (b) \(2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{NO}_{2}(g)\) (c) \(\mathrm{C}_{2} \mathrm{H}_{4}(g)+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(l)\) (d) \(\mathrm{NH}_{4} \mathrm{NO}_{3}(s)+\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow 2 \mathrm{NH}_{3}(g)+\mathrm{O}_{2}(g)\)

Consider the reaction $$ 2 \mathrm{HI}(g) \rightleftharpoons \mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) $$ At \(500^{\circ} \mathrm{C}\), a flask initially has all three gases, each at a partial pressure of \(0.200\) atm. When equilibrium is established, the partial pressure of HI is determined to be \(0.48\) atm. What is \(\Delta G^{\circ}\) for the reaction at \(500^{\circ} \mathrm{C}\) ?

In each of the following pairs, choose the substance with a lower entropy. (a) \(\mathrm{H}_{2} \mathrm{O}(l)\) at \(10^{\circ} \mathrm{C}, \mathrm{H}_{2} \mathrm{O}(l)\) at \(30^{\circ} \mathrm{C}\) (b) C (graphite), \(\mathrm{C}\) (diamond) (c) \(\mathrm{Cl}_{2}(l), \mathrm{Cl}_{2}(g)\), both at room temperature

Consider the following reactions at \(25^{\circ} \mathrm{C}\) : $$ \begin{aligned} &\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(a q)+6 \mathrm{O}_{2}(g) \longrightarrow 6 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O} \quad \Delta G^{\circ}=-2870 \mathrm{~kJ} \\ &\mathrm{ADP}(a q)+\mathrm{HPO}_{4}{ }^{2-}(a q)+2 \mathrm{H}^{+}(a q) \longrightarrow \mathrm{ATP}(a q)+\mathrm{H}_{2} \mathrm{O} \\ &\Delta G^{\circ}=31 \mathrm{~kJ} \end{aligned} $$ Write an equation for a coupled reaction between glucose, \(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\), and ADP in which \(\Delta G^{\circ}=-390 \mathrm{~kJ}\).

At \(1200 \mathrm{~K}\), an equilibrium mixture of \(\mathrm{CO}\) and \(\mathrm{CO}_{2}\) gases contains 98.31 mol percent CO and some solid carbon. The total pressure of the mixture is \(1.00 \mathrm{~atm}\). For the system $$ \mathrm{CO}_{2}(g)+\mathrm{C}(s) \rightleftharpoons 2 \mathrm{CO}(g) $$ calculate (a) \(P_{\mathrm{Co}}\) and \(P_{\mathrm{CO}_{2}}\) (b) \(K\) (c) \(\Delta G^{\circ}\) at \(1200 \mathrm{~K}\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free