Given the following standard free energies at \(25^{\circ} \mathrm{C}\), $$ \begin{array}{ll} \mathrm{SO}_{2}(g)+3 \mathrm{CO}(g) \longrightarrow \operatorname{COS}(g)+2 \mathrm{CO}_{2}(g) & \Delta G^{\circ}=-246.5 \mathrm{~kJ} \\ \mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g) \longrightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g) & \Delta G^{\circ}=-28.5 \mathrm{~kJ} \end{array} $$ find \(\Delta G^{\circ}\) at \(25^{\circ} \mathrm{C}\) for the following reaction. $$ \mathrm{SO}_{2}(g)+\mathrm{CO}(g)+2 \mathrm{H}_{2}(g) \longrightarrow \mathrm{COS}(g)+2 \mathrm{H}_{2} \mathrm{O}(g) $$

Short Answer

Expert verified
Short Answer: The standard free energy change, \(\Delta G^{\circ}\), for the desired reaction at \(25^{\circ} \mathrm{C}\) is \(-303.5\,\mathrm{kJ}\).

Step by step solution

01

Identify the given reactions and the desired reaction

We are given two reactions with their standard free energies, \(\Delta G^{\circ}\), at \(25^{\circ} \mathrm{C}\): Reaction 1: $$\mathrm{SO}_{2}(g)+3 \mathrm{CO}(g) \longrightarrow \operatorname{COS}(g)+2 \mathrm{CO}_{2}(g), \quad \Delta G^{\circ}_1=-246.5 \mathrm{~kJ}$$ Reaction 2: $$\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g) \longrightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g), \quad \Delta G^{\circ}_2=-28.5 \mathrm{~kJ}$$ Our goal is to find \(\Delta G^{\circ}\) for the following reaction: Desired Reaction: $$\mathrm{SO}_{2}(g)+\mathrm{CO}(g)+2 \mathrm{H}_{2}(g) \longrightarrow \mathrm{COS}(g)+2 \mathrm{H}_{2} \mathrm{O}(g), \quad \Delta G^{\circ}_\text{desired}?$$
02

Manipulate the given reactions to obtain the desired reaction

First, we can notice that if we multiply Reaction 2 by 2 then we'll get exactly 2 moles of \(\mathrm{H}_{2}\mathrm{O}(g)\) produced in the desired reaction: $$2 \times (\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g) \longrightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g)), \quad 2 \times \Delta G^{\circ}_2=-57.0 \mathrm{~kJ}$$ Now, we have: $$\mathrm{SO}_{2}(g)+2 \mathrm{CO}(g) \longrightarrow \mathrm{COS}(g)+\mathrm{CO}_{2}(g), \quad \Delta G^{\circ}_1=-246.5 \mathrm{~kJ}$$ $$2 \times (\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g) \longrightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g)), \quad 2 \times \Delta G^{\circ}_2=-57.0 \mathrm{~kJ}$$ We can combine both reactions and cancel-out common terms to obtain the desired reaction: $$\mathrm{SO}_{2}(g) \cancel{+2 \mathrm{CO}(g)}+2 \mathrm{H}_{2}(g) \longrightarrow \mathrm{COS}(g) \cancel{-\mathrm{CO}_{2}(g)}+2 \mathrm{H}_{2} \mathrm{O}(g),$$
03

Calculate ΔG° for the desired reaction

According to Hess's law, when we sum up the manipulated reactions to obtain the desired reaction, we can also sum up their corresponding standard free energy changes to find the \(\Delta G^{\circ}\) for the desired reaction: $$\Delta G^{\circ}_\text{desired} = \Delta G^{\circ}_1 + 2 \times \Delta G^{\circ}_2 = (-246.5) + 2 \times (-28.5) = -246.5 - 57.0 = -303.5 \text{ kJ}$$ So, the standard free energy change, \(\Delta G^{\circ}\), for the desired reaction at \(25^{\circ} \mathrm{C}\) is \(-303.5\,\mathrm{kJ}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider the reaction $$ \mathrm{N}_{2} \mathrm{O}(g)+\mathrm{NO}_{2}(g) \longrightarrow 3 \mathrm{NO}(g) \quad K=4.4 \times 10^{-19} $$ (a) Calculate \(\Delta G^{\circ}\) for the reaction at \(25^{\circ} \mathrm{C}\). (b) Calculate \(\Delta G_{i}^{\circ}\) for \(\mathrm{N}_{2} \mathrm{O}\) at \(25^{\circ} \mathrm{C}\).

Theoretically, one can obtain zinc from an ore containing zinc sulfide, \(\mathrm{ZnS}\), by the reaction $$ \mathrm{ZnS}(s) \longrightarrow \mathrm{Zn}(s)+\mathrm{S}(s) $$ (a) Show by calculation that this reaction is not feasible at \(25^{\circ} \mathrm{C}\). (b) Show that by coupling the above reaction with the reaction $$ \mathrm{S}(s)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{SO}_{2}(g) $$ the overall reaction, in which \(\mathrm{Zn}\) is obtained by roasting in oxygen, is feasible at \(25^{\circ} \mathrm{C}\).

Which of the following processes are spontaneous? (a) building a sand castle (b) outlining your chemistry notes (c) wind scattering leaves in a pile

Predict the sign of \(\Delta S^{\circ}\) for each of the following reactions. (a) \(2 \mathrm{Na}(s)+\mathrm{Cl}_{2}(g) \longrightarrow 2 \mathrm{NaCl}(s)\) (b) \(2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{NO}_{2}(g)\) (c) \(\mathrm{C}_{2} \mathrm{H}_{4}(g)+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(l)\) (d) \(\mathrm{NH}_{4} \mathrm{NO}_{3}(s)+\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow 2 \mathrm{NH}_{3}(g)+\mathrm{O}_{2}(g)\)

Consider the following reaction with its thermodynamic data: \(2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{AB}(\mathrm{g}) \quad \Delta H^{\circ}<0 ; \Delta S^{\circ}<0 ; \Delta G^{\circ}\) at \(60^{\circ} \mathrm{C}=+10 \mathrm{~kJ}\) Which statements about the reaction are true? (a) When \(\Delta G=1\), the reaction is at equilibrium. (b) When \(Q=1, \Delta G=\Delta G^{\circ}\). (c) At \(75^{\circ} \mathrm{C}\), the reaction is definitely nonspontaneous. (d) At \(100^{\circ} \mathrm{C}\), the reaction has a positive entropy change. (e) If \(\mathrm{A}\) and \(\mathrm{B}_{2}\) are elements in their stable states, \(S^{\circ}\) for \(\mathrm{A}\) and \(\mathrm{B}_{2}\) at \(25^{\circ} \mathrm{C}\) is \(0 .\) (f) \(K\) for the reaction at \(60^{\circ} \mathrm{C}\) is less than 1 .

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free