\(K_{a}\) for acetic acid \(\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)\) at \(25^{\circ} \mathrm{C}\) is \(1.754 \times 10^{-5} .\) At \(50^{\circ} \mathrm{C}, K_{\mathrm{a}}\) is \(1.633 \times 10^{-5}\). Assuming that \(\Delta H^{\circ}\) and \(\Delta S^{\circ}\) are not affected by a change in temperature, calculate \(\Delta S^{\circ}\) for the ionization of acetic acid.

Short Answer

Expert verified
The standard entropy change (ΔS°) for the ionization of acetic acid at both temperatures is approximately -109.94 J·K⁻¹·mol⁻¹.

Step by step solution

01

Calculate \(\Delta G^{\circ}\) at both temperatures

To get the \(\Delta G^{\circ}\) values for the given two temperatures we will use \(\Delta G^{\circ}=-RT \ln \left(K_{a}\right)\) for each one, where K is the equilibrium constant, R is the gas constant, and T is the temperature in Kelvin. For \(25^{\circ} \mathrm{C}\) (or \(298\,\mathrm{K}\)): \(\Delta G_1^{\circ}=-R(298\,\mathrm{K})\ln\left(1.754 \times 10^{-5}\right)\) For \(50^{\circ} \mathrm{C}\) (or \(323\,\mathrm{K}\)): \(\Delta G_2^{\circ}=-R(323\,\mathrm{K})\ln\left(1.633 \times 10^{-5}\right)\)
02

Set up the \(\Delta G^{\circ}\) equations with \(\Delta H^{\circ}\) and \(\Delta S^{\circ}\)

Now we are going to set up equations for each of them using \(\Delta G^{\circ}= \Delta H^{\circ} - T\Delta S^{\circ}\). For \(25^{\circ} \mathrm{C}\) (\(298\,\mathrm{K}\)): \(\Delta G_1^{\circ}=\Delta H^{\circ}-298\,\mathrm{K}\Delta S^{\circ}\) For \(50^{\circ} \mathrm{C}\) (\(323\,\mathrm{K}\)): \(\Delta G_2^{\circ}=\Delta H^{\circ}-323\,\mathrm{K}\Delta S^{\circ}\)
03

Solve the system of equations for \(\Delta S^{\circ}\)

Now we have a system of two linear equations with two variables, \(\Delta H^{\circ}\) and \(\Delta S^{\circ}\). \(\Delta G_1^{\circ}-\Delta G_2^{\circ}=-25\,\mathrm{K}\Delta S^{\circ}\) Next, we can substitute the \(\Delta G^{\circ}\) values calculated in Step 1 and solve the equation for \(\Delta S^{\circ}\). \((-R(298\,\mathrm{K})\ln\left(1.754 \times 10^{-5}\right))-(-R(323\,\mathrm{K})\ln\left(1.633 \times 10^{-5}\right))=-25\,\mathrm{K}\Delta S^{\circ}\) Now, we can isolate \(\Delta S^{\circ}\) and get its value: \(\Delta S^{\circ}=\frac{-R(298\,\mathrm{K})\ln\left(1.754 \times 10^{-5}\right)+R(323\,\mathrm{K})\ln\left(1.633 \times 10^{-5}\right)}{-25\,\mathrm{K}}\) Finally, plugging the values of R(\(8.314\,\mathrm{J\,K^{-1}\,mol^{-1}}\)) to get the numerical value for \(\Delta S^{\circ}\): \(\Delta S^{\circ}=\frac{-8.314\,\mathrm{J\,K^{-1}\,mol^{-1}}(298\,\mathrm{K})\ln\left(1.754 \times 10^{-5}\right)+8.314\,\mathrm{J\,K^{-1}\,mol^{-1}}(323\,\mathrm{K})\ln\left(1.633 \times 10^{-5}\right)}{-25\,\mathrm{K}}\) After calculating, we get: \(\Delta S^{\circ}\approx -109.94\, \mathrm{J\,K^{-1}\,mol^{-1}}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Use the values for \(\Delta G_{i}^{o}\) in Appendix 1 to calculate \(K_{\text {ip }}\) for barium sulfate at \(25^{\circ} \mathrm{C}\). Compare with the value given in Chapter 16 .

Predict the sign of \(\Delta S^{\circ}\) for each of the following reactions. (a) \(2 \mathrm{Na}(s)+\mathrm{Cl}_{2}(g) \longrightarrow 2 \mathrm{NaCl}(s)\) (b) \(2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{NO}_{2}(g)\) (c) \(\mathrm{C}_{2} \mathrm{H}_{4}(g)+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(l)\) (d) \(\mathrm{NH}_{4} \mathrm{NO}_{3}(s)+\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow 2 \mathrm{NH}_{3}(g)+\mathrm{O}_{2}(g)\)

Consider the following reaction at \(25^{\circ} \mathrm{C}\) : $$ \mathrm{Cl}_{2}(g) \rightleftharpoons 2 \mathrm{Cl}(g) \quad K=1.0 \times 10^{-37} $$ (a) Calculate \(\Delta G^{\circ}\) for the reaction at \(25^{\circ} \mathrm{C}\). (b) Calculate \(\Delta G_{\mathrm{f}}^{\circ}\) for \(\mathrm{Cl}(\mathrm{g})\) at \(25^{\circ} \mathrm{C}\).

Consider the reaction $$ \mathrm{NH}_{4}{ }^{+}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{NH}_{3}(a q) $$ Use \(\Delta G_{i}^{\circ}\) for \(\mathrm{NH}_{3}(a q)\) at \(25^{\circ} \mathrm{C}=-26.7 \mathrm{~kJ} / \mathrm{mol}\) and the appropriate tables to calculate (a) \(\Delta G^{\circ}\) at \(25^{\circ} \mathrm{C}\) (b) \(K_{\mathrm{a}}\) at \(25^{\circ} \mathrm{C}\)

A student is asked to prepare a \(0.030 \mathrm{M}\) aqueous solution of \(\mathrm{PbCl}_{2}\) (a) Is this possible at \(25^{\circ} \mathrm{C} ?\) (Hint: Is dissolving \(0.030 \mathrm{~mol}\) of \(\mathrm{PbCl}_{2}\) at \(25^{\circ} \mathrm{C}\) possible? \()\) (b) If the student used water at \(100^{\circ} \mathrm{C}\), would this be possible?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free