Solve the system of equations for \(\Delta S^{\circ}\)
Now we have a system of two linear equations with two variables, \(\Delta H^{\circ}\) and \(\Delta S^{\circ}\).
\(\Delta G_1^{\circ}-\Delta G_2^{\circ}=-25\,\mathrm{K}\Delta S^{\circ}\)
Next, we can substitute the \(\Delta G^{\circ}\) values calculated in Step 1 and solve the equation for \(\Delta S^{\circ}\).
\((-R(298\,\mathrm{K})\ln\left(1.754 \times 10^{-5}\right))-(-R(323\,\mathrm{K})\ln\left(1.633 \times 10^{-5}\right))=-25\,\mathrm{K}\Delta S^{\circ}\)
Now, we can isolate \(\Delta S^{\circ}\) and get its value:
\(\Delta S^{\circ}=\frac{-R(298\,\mathrm{K})\ln\left(1.754 \times 10^{-5}\right)+R(323\,\mathrm{K})\ln\left(1.633 \times 10^{-5}\right)}{-25\,\mathrm{K}}\)
Finally, plugging the values of R(\(8.314\,\mathrm{J\,K^{-1}\,mol^{-1}}\)) to get the numerical value for \(\Delta S^{\circ}\):
\(\Delta S^{\circ}=\frac{-8.314\,\mathrm{J\,K^{-1}\,mol^{-1}}(298\,\mathrm{K})\ln\left(1.754 \times 10^{-5}\right)+8.314\,\mathrm{J\,K^{-1}\,mol^{-1}}(323\,\mathrm{K})\ln\left(1.633 \times 10^{-5}\right)}{-25\,\mathrm{K}}\)
After calculating, we get:
\(\Delta S^{\circ}\approx -109.94\, \mathrm{J\,K^{-1}\,mol^{-1}}\)