Calculate \(E^{\circ}\) for the following voltaic cells: (a) \(\mathrm{Pb}(s)+2 \mathrm{Ag}^{+}(a q) \longrightarrow \mathrm{Pb}^{2+}(a q)+2 \mathrm{Ag}(s)\) (b) \(\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{Fe}^{2+}(a q)+4 \mathrm{H}^{+}(a q) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{Fe}^{3+}(a q)\) (c) a Cd-Cd \(^{2+}\) half-cell and a \(\mathrm{Zn}-\mathrm{Zn}^{2+}\) half-cell

Short Answer

Expert verified
Question: Calculate the standard cell potential, \(E^{\circ}\), for the given redox reactions. Answer: (a) 0.93 V (b) 0.46 V (c) 0.36 V

Step by step solution

01

Identify the reduction and oxidation half-reactions

For each voltaic cell, identify the reduction and oxidation half-reactions. (a) Reduction: \(2 \mathrm{Ag}^{+}(aq) + 2 e^{-} \longrightarrow 2 \mathrm{Ag}(s)\) Oxidation: \(\mathrm{Pb}(s) \longrightarrow \mathrm{Pb}^{2+}(aq) + 2 e^{-}\) (b) Reduction: $\mathrm{O}_{2}(g) + 4 e^{-} + 4 \mathrm{H}^{+}(aq) \longrightarrow 2 \mathrm{H}_{200}` Oxidation: \(4 \mathrm{Fe}^{2+}(aq) \longrightarrow 4 \mathrm{Fe}^{3+}(aq) + 4 e^{-}\) (c) For the Cd-Cd\(^{2+}\) half-cell and the Zn-Zn\(^{2+}\) half-cell: Reduction: \(\mathrm{Cd}^{2+}(aq) + 2 e^{-} \longrightarrow \mathrm{Cd}(s)\) Oxidation: \(\mathrm{Zn}(s) \longrightarrow \mathrm{Zn}^{2+}(aq) + 2 e^{-}\)
02

Use the standard reduction potentials to calculate the standard cell potential

Using the standard reduction potentials for each half-cell, find the \(E^{\circ}\) for each reaction. (a) \(E^{\circ}_{cell} = E^{\circ}_{reduction} - E^{\circ}_{oxidation} = (0.80 V) - (-0.13 V) = 0.93 V\) (b) \(E^{\circ}_{cell} = E^{\circ}_{reduction} - E^{\circ}_{oxidation} = (1.23 V) - (0.77 V) = 0.46 V\) (c) \(E^{\circ}_{cell} = E^{\circ}_{reduction} - E^{\circ}_{oxidation} = (-0.40 V) - (-0.76 V) = 0.36 V\) So, the standard cell potentials for each cell are: (a) 0.93 V (b) 0.46 V (c) 0.36 V

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In biological systems, acetate ion is converted to ethyl alcohol in a two- step process: \(\mathrm{CH}_{3} \mathrm{COO}^{-}(a q)+3 \mathrm{H}^{+}(a q)+2 e^{-} \longrightarrow \mathrm{CH}_{3} \mathrm{CHO}(a q)+\mathrm{H}_{2} \mathrm{O}\) \(E^{o \prime}=-0.581 \mathrm{~V}\) \(\mathrm{CH}_{3} \mathrm{CHO}(a q)+2 \mathrm{H}^{+}(a q)+2 e^{-} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(a q) \quad E^{o \prime}=-0.197 \mathrm{~V}\) \(\left(E^{\circ \prime}\right.\) is the standard reduction voltage at \(25^{\circ} \mathrm{C}\) and \(\mathrm{pH}\) of \(7.00 .\) ) (a) Calculate \(\Delta G^{\circ \prime}\) for each step and for the overall conversion. (b) Calculate \(E^{\circ \prime}\) for the overall conversion.

Use the following half-equations to write three spontaneous reactions. Justify your answers by calculating \(E^{\circ}\) for the cells. (1) \(\mathrm{MnO}_{4}^{-}(a q)+8 \mathrm{H}^{+}(a q)+5 e^{-} \longrightarrow \mathrm{Mn}^{2+}(a q)+4 \mathrm{H}_{2} \mathrm{O}\) \(E^{\circ}=+1.512 \mathrm{~V}\) (2) \(\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 e^{-} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O} \quad E^{\circ}=+1.229 \mathrm{~V}\) (3) \(\mathrm{Co}^{2+}(a q)+2 e^{-} \longrightarrow \mathrm{Co}(s) \quad E^{\circ}=-0.282 \mathrm{~V}\)

Which species in each pair is the stronger oxidizing agent? (a) \(\mathrm{NO}_{3}^{-}\) or \(\mathrm{I}_{2}\) (b) \(\mathrm{Fe}(\mathrm{OH})_{3}\) or \(\mathrm{S}\) (c) \(\mathrm{Mn}^{2+}\) or \(\mathrm{MnO}_{2}\) (d) \(\mathrm{ClO}_{3}^{-}\) in acidic solution or \(\mathrm{ClO}_{3}^{-}\) in basic solution

An electrolytic cell produces aluminum from \(\mathrm{Al}_{2} \mathrm{O}_{3}\) at the rate of ten kilograms a day. Assuming a yield of \(100 \%\), (a) how many moles of electrons must pass through the cell in one day? (b) how many amperes are passing through the cell? (c) how many moles of oxygen \(\left(\mathrm{O}_{2}\right)\) are being produced simultaneously?

For the following half-reactions, answer the questions below: $$ \begin{array}{cc} \mathrm{Ce}^{4+}(a q)+e^{-} \longrightarrow \mathrm{Ce}^{3+}(a q) & E^{\circ}=+1.61 \mathrm{~V} \\ \mathrm{Ag}^{+}(a q)+e^{-} \longrightarrow \mathrm{Ag}(s) & E^{\circ}=+0.80 \mathrm{~V} \\ \mathrm{Hg}_{2}^{2+}(a q)+2 e^{-} \longrightarrow 2 \mathrm{Hg}(l) & E^{\circ}=+0.80 \mathrm{~V} \\ \mathrm{Sn}^{2+}(a q)+2 e^{-} \longrightarrow \mathrm{Sn}(s) & E^{\circ}=-0.14 \mathrm{~V} \\ \mathrm{Ni}^{2+}(a q)+2 e^{-} \longrightarrow \mathrm{Ni}(s) & E^{\circ}=-0.24 \mathrm{~V} \\ \mathrm{Al}^{3+}(a q)+3 e^{-} \longrightarrow \mathrm{Al}(s) & E^{o}=-1.68 \mathrm{~V} \end{array} $$ (a) Which is the weakest oxidizing agent? (b) Which is the strongest oxidizing agent? (c) Which is the strongest reducing agent? (d) Which is the weakest reducing agent? (e) Will \(\mathrm{Sn}(s)\) reduce \(\mathrm{Ag}^{+}(\mathrm{aq})\) to \(\mathrm{Ag}(s) ?\) (f) Will \(\mathrm{Hg}(l)\) reduce \(\mathrm{Sn}^{2+}(a q)\) to \(\mathrm{Sn}(s) ?\) (g) Which ion(s) can be reduced by \(\operatorname{Sn}(s)\) ? (h) Which metal(s) can be oxidized by \(\mathrm{Ag}^{+}(a q)\) ?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free