Given the following data: $$ \begin{array}{cc} \mathrm{PtCl}_{4}{ }^{2-}(a q)+2 e^{-} \longrightarrow \mathrm{Pt}(s)+4 \mathrm{Cl}^{-}(a q) & E^{o}=+0.73 \mathrm{~V} \\ \mathrm{Pt}^{2+}(a q)+4 \mathrm{Cl}^{-}(a q) \longrightarrow \mathrm{PtCl}_{4}^{2-}(a q) & K_{f}=1 \times 10^{16} \end{array} $$ find \(E^{\circ}\) for the half-cell $$ \mathrm{Pt}^{2+}(a q)+2 e^{-} \longrightarrow \operatorname{Pt}(s) $$

Short Answer

Expert verified
Answer: The standard reduction potential of Pt²⁺ in the half-cell reaction is approximately 1.18 V.

Step by step solution

01

1. Overall Reaction

Write down the overall reaction by combining the given reactions: $$ \begin{array}{c} \mathrm{PtCl}_{4}^{2-}(a q)+2 e^{-} \longrightarrow \mathrm{Pt}(s)+4\mathrm{Cl}^{-}(a q)\\ \hline \mathrm{Pt}^{2+}(a q)+4 \mathrm{Cl}^{-}(a q) \longrightarrow \mathrm{PtCl}_{4}^{2-}(a q) \end{array} $$ Adding the above two reactions: $$ \mathrm{Pt}^{2+}(a q)+2 e^{-} \longrightarrow \operatorname{Pt}(s) $$ This is the half-cell reaction we need to find the standard reduction potential for.
02

2. Calculate the equilibrium constant for reduction half-cell reaction

Since we know the formation constant of the overall reaction, we can calculate the equilibrium constant (K_c) for the half-cell reaction using the formula: $$ K_c = \frac{K_f}{E^\circ} $$ Where \(K_f\) is the formation constant, and \(E^\circ\) is the standard reduction potential of the given half-cell reaction. For the half-cell reaction: $$ \mathrm{PtCl}_{4}^{2-}(a q)+2 e^{-} \longrightarrow \mathrm{Pt}(s)+4\mathrm{Cl}^{-}(a q) $$ Using the given values: $$ K_c = \frac{1 \times 10^{16}}{0.73} $$ $$ K_c \approx 1.37 \times 10^{16} $$
03

3. Use the Nernst Equation to find the standard potential

Now, we will use the Nernst Equation which relates the standard potential (Eº) of a half-cell reaction, the number of electrons involved (n), the equilibrium constant (K_c), and the standard reduction potential (Eº) of the half-cell reaction we want to find. The equation is: $$ 0 = E^°_{Pt^{2+}/Pt} - \frac{0.0592}{n} \log{K_c} $$ We already have the value of K_c, and in our half-cell reaction, 2 electrons are transferred (n=2). Inserting the values into the equation: $$ 0 = E^°_{Pt^{2+}/Pt} - \frac{0.0592}{2} \log{(1.37 \times 10^{16})} $$ Now solve for \(E^°_{Pt^{2+}/Pt}\): $$ E^°_{Pt^{2+}/Pt} = \frac{0.0592}{2} \log{(1.37 \times 10^{16})} $$ $$ E^°_{Pt^{2+}/Pt} \approx 1.18~V $$ So the standard reduction potential for the half-cell reaction: $$ \mathrm{Pt}^{2+}(a q)+2 e^{-} \longrightarrow \operatorname{Pt}(s) $$ is \(E^°_{Pt^{2+}/Pt} \approx 1.18 V\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Calculate \(E^{\circ}\) for the following voltaic cells: (a) \(\mathrm{Pb}(s)+2 \mathrm{Ag}^{+}(a q) \longrightarrow \mathrm{Pb}^{2+}(a q)+2 \mathrm{Ag}(s)\) (b) \(\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{Fe}^{2+}(a q)+4 \mathrm{H}^{+}(a q) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{Fe}^{3+}(a q)\) (c) a Cd-Cd \(^{2+}\) half-cell and a \(\mathrm{Zn}-\mathrm{Zn}^{2+}\) half-cell

In biological systems, acetate ion is converted to ethyl alcohol in a two- step process: \(\mathrm{CH}_{3} \mathrm{COO}^{-}(a q)+3 \mathrm{H}^{+}(a q)+2 e^{-} \longrightarrow \mathrm{CH}_{3} \mathrm{CHO}(a q)+\mathrm{H}_{2} \mathrm{O}\) \(E^{o \prime}=-0.581 \mathrm{~V}\) \(\mathrm{CH}_{3} \mathrm{CHO}(a q)+2 \mathrm{H}^{+}(a q)+2 e^{-} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(a q) \quad E^{o \prime}=-0.197 \mathrm{~V}\) \(\left(E^{\circ \prime}\right.\) is the standard reduction voltage at \(25^{\circ} \mathrm{C}\) and \(\mathrm{pH}\) of \(7.00 .\) ) (a) Calculate \(\Delta G^{\circ \prime}\) for each step and for the overall conversion. (b) Calculate \(E^{\circ \prime}\) for the overall conversion.

Which of the following species will be oxidized by \(1 \mathrm{MHCl}\) ? (a) \(\mathrm{Au}\) (b) \(\mathrm{Mg}\) (c) Cu (d) \(\mathrm{F}^{-}\)

Calculate voltages of the following cells at \(25^{\circ} \mathrm{C}\) and under the following conditions. (a) \(\mathrm{Fe}\left|\mathrm{Fe}^{2+}(0.010 \mathrm{M}) \| \mathrm{Cu}^{2+}(0.10 \mathrm{M})\right| \mathrm{Cu}\) (b) \(\mathrm{Pt}\left|\mathrm{Sn}^{2+}(0.10 \mathrm{M}), \mathrm{Sn}^{4+}(0.010 \mathrm{M}) \| \mathrm{Co}^{2+}(0.10 \mathrm{M})\right| \mathrm{Co}\)

Consider three metals, \(\mathrm{X}, \mathrm{Y}\), and \(\mathrm{Z}\), and their salts, \(\mathrm{XA}, \mathrm{YA}\), and \(\mathrm{ZA}\). Three experiments take place with the following results: \- \(\mathrm{X}+\mathrm{hot} \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2}\) bubbles \(\mathrm{X}+\mathrm{YA} \longrightarrow\) no reaction I \(\mathrm{X}+\mathrm{ZA} \longrightarrow \mathrm{X}\) discolored \(+\mathrm{Z}\) Rank metals \(\mathrm{X}, \mathrm{Y}\), and \(\mathrm{Z}\), in order of decreasing strength as reducing agents.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free