(b) Calculate ΔE for one gram of U-235 undergoing fission
To calculate ΔE, we need first to find the binding energy of the initial and final products and then subtract them to find the energy difference. The mass of U-235 is 235.043 amu, and that of a neutron is 1.0087 amu. Thus, the mass of the reactants is:
$$_i\mathrm{M}=235.043\,\mathrm{amu}+1.0087\,\mathrm{amu}=236.0517\,\mathrm{amu}$$
Since 1 amu = 931.5 MeV, the mass-energy of reactants is:
$$_i\mathrm{E}=236.0517\,\mathrm{amu}\times931.5\,\frac{\mathrm{MeV}}{\mathrm{amu}}=219793.776\,\mathrm{MeV}$$
Now, we need to find the mass-energy of the products:
Rubidium-89: mass = 88.919 amu
Cerium-144: mass = 143.912 amu
Neutron: mass = 1.0087 amu
So the mass of products is $$_f\mathrm{M}=88.919\,\mathrm{amu}+143.912\,\mathrm{amu}+6\times1.0087\,\mathrm{amu}=234.8702\,\mathrm{amu}$$
The mass-energy of products is:
$$_f\mathrm{E}=234.8702\,\mathrm{amu}\times931.5\,\frac{\mathrm{MeV}}{\mathrm{amu}}=218677.198\,\mathrm{MeV}$$
To find ΔE, we subtract the energy of the products from that of the reactants:
$$\Delta E=_i\mathrm{E}-_f\mathrm{E}=219793.776\,\mathrm{MeV}-218677.198\,\mathrm{MeV}=1116.578\,\mathrm{MeV}$$
To find the energy released when _1_ gram of U-235 undergoes fission, we need to convert the MeV into Joules and multiply by the number of atoms in _1_ gram:
$$\Delta E=1116.578\,\mathrm{MeV}\times\frac{1.602\times10^{-13}\,\mathrm{J}}{1\,\mathrm{MeV}}=1.79\times10^{-10}\,\mathrm{J}$$
For 1 gram of U-235:
$$1\,\mathrm{g}\times\frac{1\,\mathrm{mol}}{235.043\,\mathrm{g}}\times\frac{6.022\times10^{23}}{1\,\mathrm{mol}}=2.563\times10^{21}\,\mathrm{atoms}$$
So, for 1 gram of U-235 undergoing fission:
$$_b\Delta E=1.79\times10^{-10}\,\mathrm{J/atom}\times2.563\times10^{21}\,\mathrm{atoms}=4.59\times10^{11}\,\mathrm{J}$$