Balance the following redox equations. (a) \(\mathrm{Fe}(s)+\mathrm{NO}_{3}^{-}(a q) \longrightarrow \mathrm{Fe}^{3+}(a q)+\mathrm{NO}_{2}(g)\) (acidic) (b) \(\mathrm{Cr}(\mathrm{OH})_{3}(s)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{CrO}_{4}^{2-}(a q)\) (basic)

Short Answer

Expert verified
Question: Balance the following two redox equations. (a) \(Fe(s)+NO_{3}^{-}(aq) \longrightarrow Fe^{3+}(aq)+NO_{2}(g)\) (acidic) (b) \(Cr(OH)_{3}(s)+O_{2}(g) \longrightarrow CrO_{4}^{2-}(aq)\) (basic) Answer: (a) The balanced redox equation in acidic conditions is: \(Fe(s) + 3NO_{3}^{-}(aq) + 6H^+(aq) \longrightarrow Fe^{3+}(aq) + 3NO_{2}(g) + 3H_2O(l)\) (b) The balanced redox equation in basic conditions is: \(2Cr(OH)_{3}(s) + \frac{3}{2}O_{2}(g) \longrightarrow 2CrO_{4}^{2-}(aq) + 12H_2O(l)\)

Step by step solution

01

Identify the oxidation and reduction half-reactions

Oxidation: \(\mathrm{Fe}(s) \longrightarrow \mathrm{Fe}^{3+}(a q)\) Reduction: \(\mathrm{NO}_{3}^{-}(a q) \longrightarrow \mathrm{NO}_{2}(g)\)
02

Balance the atoms other than hydrogen and oxygen

The atoms of elements other than hydrogen and oxygen are already balanced.
03

Balance the oxygen atoms by adding water molecules

Oxidation: No need to add water since there is no oxygen atom in this half-reaction. Reduction: Add 1 water molecule to balance the oxygen atoms. \(\mathrm{NO}_{3}^{-}(a q) \longrightarrow \mathrm{NO}_{2}(g) + \mathrm{H_2O}(l)\)
04

Balance the hydrogen atoms by adding hydrogen ions

Oxidation: No need to add hydrogen ions since there is no hydrogen atom in this half-reaction. Reduction: Add 2 H+ ions to balance the hydrogen atoms. \(\mathrm{NO}_{3}^{-}(a q) + 2\mathrm{H^+}(a q) \longrightarrow \mathrm{NO}_{2}(g) + \mathrm{H_2O}(l)\)
05

Balance the charge of the half-reactions by adding electrons

Oxidation: Add 3 electrons to balance the charge. \(\mathrm{Fe}(s) \longrightarrow \mathrm{Fe}^{3+}(a q) + 3 e^-\) Reduction: Add 1 electron to balance the charge. \(\mathrm{NO}_{3}^{-}(a q) + 2\mathrm{H^+}(a q) + e^- \longrightarrow \mathrm{NO}_{2}(g) + \mathrm{H_2O}(l)\)
06

Make the number of electrons in the two half-reactions equal

Multiply the reduction half-reaction by 3. Oxidation: \(\mathrm{Fe}(s) \longrightarrow \mathrm{Fe}^{3+}(a q) + 3 e^-\) Reduction: \(3(\mathrm{NO}_{3}^{-}(a q) + 2\mathrm{H^+}(a q) + e^-) \longrightarrow 3(\mathrm{NO}_{2}(g) + \mathrm{H_2O}(l))\) So the new reduction half-reaction is: \(\mathrm{3NO}_{3}^{-}(a q) + 6\mathrm{H^+}(a q) + 3 e^- \longrightarrow 3\mathrm{NO}_{2}(g) + 3\mathrm{H_2O}(l)\)
07

Add the two half-reactions together

\(\mathrm{Fe}(s) + 3\mathrm{NO}_{3}^{-}(a q) + 6\mathrm{H^+}(a q) \longrightarrow \mathrm{Fe}^{3+}(a q) + 3\mathrm{NO}_{2}(g) + 3\mathrm{H_2O}(l)\)
08

Cancel out any common terms

There are no common terms that can be canceled out. So the balanced redox equation in acidic conditions is: \(\mathrm{Fe}(s) + 3\mathrm{NO}_{3}^{-}(a q) + 6\mathrm{H^+}(a q) \longrightarrow \mathrm{Fe}^{3+}(a q) + 3\mathrm{NO}_{2}(g) + 3\mathrm{H_2O}(l)\) (b) \(\mathrm{Cr}(\mathrm{OH})_{3}(s)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{CrO}_{4}^{2-}(a q)\) (basic) Follow the same steps 1 to 7 as in (a):
09

Identify the oxidation and reduction half-reactions

Oxidation: \(\mathrm{Cr(OH)}_3(s) \longrightarrow \mathrm{CrO}_{4}^{2-}(a q)\) Reduction: \(\mathrm{O}_{2}(g) \longrightarrow \mathrm{H_2O}(l)\)
10

Balance the atoms other than hydrogen and oxygen

Oxidation: Add 2 Cr atoms to the product side. \(2\mathrm{Cr(OH)}_3(s) \longrightarrow 2\mathrm{CrO}_{4}^{2-}(a q)\) Reduction: No need to balance atoms since there are no other elements in this half-reaction.
11

Balance the oxygen atoms by adding water molecules

Oxidation: Add 6 water molecules to balance the oxygen atoms. \(2\mathrm{Cr(OH)}_3(s) \longrightarrow 2\mathrm{CrO}_{4}^{2-}(a q) + 6\mathrm{H_2O}(l)\) Reduction: Add 4 water molecules to balance the oxygen atoms. \(\mathrm{O}_{2}(g) + 4\mathrm{H}_2\mathrm{O}(l) \longrightarrow \mathrm{H_2O}(l)\)
12

Balance the hydrogen atoms by adding hydrogen ions

Oxidation: Add 12 H+ ions to balance the hydrogen atoms. \(2\mathrm{Cr(OH)}_3(s) + 12\mathrm{H^+}(a q) \longrightarrow 2\mathrm{CrO}_{4}^{2-}(a q) + 6\mathrm{H_2O}(l)\) Reduction: Add 8 H+ ions to balance the hydrogen atoms. \(\mathrm{O}_{2}(g) + 4\mathrm{H}_2\mathrm{O}(l) + 8\mathrm{H}^+(a q) \longrightarrow \mathrm{H_2O}(l)\)
13

Balance the charge of the half-reactions by adding electrons

Oxidation: Add 6 electrons to balance the charge. \(2\mathrm{Cr(OH)}_3(s) + 12\mathrm{H^+}(a q) + 6 e^- \longrightarrow 2\mathrm{CrO}_{4}^{2-}(a q) + 6\mathrm{H_2O}(l)\) Reduction: Add 4 electrons to balance the charge. \(\mathrm{O}_{2}(g) + 4\mathrm{H}_2\mathrm{O}(l)+ 8\mathrm{H}^+(a q) + 4 e^- \longrightarrow \mathrm{H_2O}(l)\)
14

Make the number of electrons in the two half-reactions equal

Multiply the reduction half-reaction by 1.5 (or multiply by 3 and then divide by 2). Oxidation: \(2\mathrm{Cr(OH)}_3(s) + 12\mathrm{H^+}(a q) + 6 e^- \longrightarrow 2\mathrm{CrO}_{4}^{2-}(a q) + 6\mathrm{H_2O}(l)\) Reduction: \((3/2)(\mathrm{O}_{2}(g) + 4\mathrm{H}_2\mathrm{O}(l)+ 8\mathrm{H}^+(a q) + 4 e^-) \longrightarrow (3/2)\mathrm{H_2O}(l)\) So the new reduction half-reaction is: \(\frac{3}{2}\mathrm{O}_{2}(g) + 6\mathrm{H}_2\mathrm{O}(l)+ 12\mathrm{H}^+(a q) + 6 e^- \longrightarrow 3\mathrm{H_2O}(l)\)
15

Add the two half-reactions together

\(2\mathrm{Cr(OH)}_3(s) + \frac{3}{2}\mathrm{O}_{2}(g) + 6\mathrm{H}_2\mathrm{O}(l)+ 12\mathrm{H}^+(a q) \longrightarrow 2\mathrm{CrO}_{4}^{2-}(a q) + 9\mathrm{H_2O}(l)\) Now we need one additional step to account for the basic conditions:
16

Convert hydrogen ions into hydroxide ions

Add 12 OH- ions to both sides of the equation to remove the H+ ions. \(2\mathrm{Cr(OH)}_3(s) + \frac{3}{2}\mathrm{O}_{2}(g) + 12\mathrm{OH}^-(a q) \longrightarrow 2\mathrm{CrO}_{4}^{2-}(a q) + 9\mathrm{H_2O}(l) + 12\mathrm{OH}^-(a q)\) Combine the water and hydroxide ions to form 3 more water molecules. \(2\mathrm{Cr(OH)}_3(s) + \frac{3}{2}\mathrm{O}_{2}(g) \longrightarrow 2\mathrm{CrO}_{4}^{2-}(a q) + 12\mathrm{H_2O}(l)\) So the balanced redox equation in basic conditions is: \(2\mathrm{Cr(OH)}_3(s) + \frac{3}{2}\mathrm{O}_{2}(g) \longrightarrow 2\mathrm{CrO}_{4}^{2-}(a q) + 12\mathrm{H_2O}(l)\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Iron(II) can be oxidized to iron(III) by permanganate ion in acidic solution. The permanganate ion is reduced to manganese(II) ion. (a) Write the oxidation half-reaction, the reduction half-reaction, and the overall redox equation. (b) Calculate \(E^{\circ}\) for the reaction. (c) Calculate the percentage of Fe in an ore if a \(0.3500-\mathrm{g}\) sample is dissolved and the \(\mathrm{Fe}^{2+}\) formed requires for titration \(55.63 \mathrm{~mL}\) of a \(0.0200 \mathrm{M}\) solution of \(\mathrm{KMnO}_{4}\)

What mass of \(\mathrm{KO}_{2}\) is required to remove \(90.0 \%\) of the \(\mathrm{CO}_{2}\) from a sample of \(1.00 \mathrm{~L}\) of exhaled air \(\left(37^{\circ} \mathrm{C}, 1.00 \mathrm{~atm}\right)\) containing \(5.00\) mole percent \(\mathrm{CO}_{2}\) ?

Write a balanced redox equation for the reaction of cadmium with aqua regia, assuming the products include \(\mathrm{CdCl}_{4}{ }^{2-}\) and \(\mathrm{NO}(\mathrm{g})\).

A self-contained breathing apparatus contains \(248 \mathrm{~g}\) of potassium superoxide. A firefighter exhales \(116 \mathrm{~L}\) of air at \(37^{\circ} \mathrm{C}\) and \(748 \mathrm{~mm} \mathrm{Hg}\). The volume percent of water in exhaled air is 6.2. What mass of potassium superoxide is left after the water in the exhaled air reacts with it?

Write a balanced equation to represent the electrolysis of aluminum oxide. If \(2.00 \mathrm{~L}\) of \(\mathrm{O}_{2}\) at \(25^{\circ} \mathrm{C}\) and \(751 \mathrm{~mm} \mathrm{Hg}\) is formed at the anode, what mass of \(\mathrm{Al}\) is formed at the cathode?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free