Balance the following redox equations. (a) \(\mathrm{Fe}(s)+\mathrm{NO}_{3}^{-}(a q) \longrightarrow \mathrm{Fe}^{3+}(a q)+\mathrm{NO}_{2}(g)\) (acidic) (b) \(\mathrm{Cr}(\mathrm{OH})_{3}(s)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{CrO}_{4}^{2-}(a q)\) (basic)

Short Answer

Expert verified
Question: Balance the following two redox equations. (a) \(Fe(s)+NO_{3}^{-}(aq) \longrightarrow Fe^{3+}(aq)+NO_{2}(g)\) (acidic) (b) \(Cr(OH)_{3}(s)+O_{2}(g) \longrightarrow CrO_{4}^{2-}(aq)\) (basic) Answer: (a) The balanced redox equation in acidic conditions is: \(Fe(s) + 3NO_{3}^{-}(aq) + 6H^+(aq) \longrightarrow Fe^{3+}(aq) + 3NO_{2}(g) + 3H_2O(l)\) (b) The balanced redox equation in basic conditions is: \(2Cr(OH)_{3}(s) + \frac{3}{2}O_{2}(g) \longrightarrow 2CrO_{4}^{2-}(aq) + 12H_2O(l)\)

Step by step solution

01

Identify the oxidation and reduction half-reactions

Oxidation: \(\mathrm{Fe}(s) \longrightarrow \mathrm{Fe}^{3+}(a q)\) Reduction: \(\mathrm{NO}_{3}^{-}(a q) \longrightarrow \mathrm{NO}_{2}(g)\)
02

Balance the atoms other than hydrogen and oxygen

The atoms of elements other than hydrogen and oxygen are already balanced.
03

Balance the oxygen atoms by adding water molecules

Oxidation: No need to add water since there is no oxygen atom in this half-reaction. Reduction: Add 1 water molecule to balance the oxygen atoms. \(\mathrm{NO}_{3}^{-}(a q) \longrightarrow \mathrm{NO}_{2}(g) + \mathrm{H_2O}(l)\)
04

Balance the hydrogen atoms by adding hydrogen ions

Oxidation: No need to add hydrogen ions since there is no hydrogen atom in this half-reaction. Reduction: Add 2 H+ ions to balance the hydrogen atoms. \(\mathrm{NO}_{3}^{-}(a q) + 2\mathrm{H^+}(a q) \longrightarrow \mathrm{NO}_{2}(g) + \mathrm{H_2O}(l)\)
05

Balance the charge of the half-reactions by adding electrons

Oxidation: Add 3 electrons to balance the charge. \(\mathrm{Fe}(s) \longrightarrow \mathrm{Fe}^{3+}(a q) + 3 e^-\) Reduction: Add 1 electron to balance the charge. \(\mathrm{NO}_{3}^{-}(a q) + 2\mathrm{H^+}(a q) + e^- \longrightarrow \mathrm{NO}_{2}(g) + \mathrm{H_2O}(l)\)
06

Make the number of electrons in the two half-reactions equal

Multiply the reduction half-reaction by 3. Oxidation: \(\mathrm{Fe}(s) \longrightarrow \mathrm{Fe}^{3+}(a q) + 3 e^-\) Reduction: \(3(\mathrm{NO}_{3}^{-}(a q) + 2\mathrm{H^+}(a q) + e^-) \longrightarrow 3(\mathrm{NO}_{2}(g) + \mathrm{H_2O}(l))\) So the new reduction half-reaction is: \(\mathrm{3NO}_{3}^{-}(a q) + 6\mathrm{H^+}(a q) + 3 e^- \longrightarrow 3\mathrm{NO}_{2}(g) + 3\mathrm{H_2O}(l)\)
07

Add the two half-reactions together

\(\mathrm{Fe}(s) + 3\mathrm{NO}_{3}^{-}(a q) + 6\mathrm{H^+}(a q) \longrightarrow \mathrm{Fe}^{3+}(a q) + 3\mathrm{NO}_{2}(g) + 3\mathrm{H_2O}(l)\)
08

Cancel out any common terms

There are no common terms that can be canceled out. So the balanced redox equation in acidic conditions is: \(\mathrm{Fe}(s) + 3\mathrm{NO}_{3}^{-}(a q) + 6\mathrm{H^+}(a q) \longrightarrow \mathrm{Fe}^{3+}(a q) + 3\mathrm{NO}_{2}(g) + 3\mathrm{H_2O}(l)\) (b) \(\mathrm{Cr}(\mathrm{OH})_{3}(s)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{CrO}_{4}^{2-}(a q)\) (basic) Follow the same steps 1 to 7 as in (a):
09

Identify the oxidation and reduction half-reactions

Oxidation: \(\mathrm{Cr(OH)}_3(s) \longrightarrow \mathrm{CrO}_{4}^{2-}(a q)\) Reduction: \(\mathrm{O}_{2}(g) \longrightarrow \mathrm{H_2O}(l)\)
10

Balance the atoms other than hydrogen and oxygen

Oxidation: Add 2 Cr atoms to the product side. \(2\mathrm{Cr(OH)}_3(s) \longrightarrow 2\mathrm{CrO}_{4}^{2-}(a q)\) Reduction: No need to balance atoms since there are no other elements in this half-reaction.
11

Balance the oxygen atoms by adding water molecules

Oxidation: Add 6 water molecules to balance the oxygen atoms. \(2\mathrm{Cr(OH)}_3(s) \longrightarrow 2\mathrm{CrO}_{4}^{2-}(a q) + 6\mathrm{H_2O}(l)\) Reduction: Add 4 water molecules to balance the oxygen atoms. \(\mathrm{O}_{2}(g) + 4\mathrm{H}_2\mathrm{O}(l) \longrightarrow \mathrm{H_2O}(l)\)
12

Balance the hydrogen atoms by adding hydrogen ions

Oxidation: Add 12 H+ ions to balance the hydrogen atoms. \(2\mathrm{Cr(OH)}_3(s) + 12\mathrm{H^+}(a q) \longrightarrow 2\mathrm{CrO}_{4}^{2-}(a q) + 6\mathrm{H_2O}(l)\) Reduction: Add 8 H+ ions to balance the hydrogen atoms. \(\mathrm{O}_{2}(g) + 4\mathrm{H}_2\mathrm{O}(l) + 8\mathrm{H}^+(a q) \longrightarrow \mathrm{H_2O}(l)\)
13

Balance the charge of the half-reactions by adding electrons

Oxidation: Add 6 electrons to balance the charge. \(2\mathrm{Cr(OH)}_3(s) + 12\mathrm{H^+}(a q) + 6 e^- \longrightarrow 2\mathrm{CrO}_{4}^{2-}(a q) + 6\mathrm{H_2O}(l)\) Reduction: Add 4 electrons to balance the charge. \(\mathrm{O}_{2}(g) + 4\mathrm{H}_2\mathrm{O}(l)+ 8\mathrm{H}^+(a q) + 4 e^- \longrightarrow \mathrm{H_2O}(l)\)
14

Make the number of electrons in the two half-reactions equal

Multiply the reduction half-reaction by 1.5 (or multiply by 3 and then divide by 2). Oxidation: \(2\mathrm{Cr(OH)}_3(s) + 12\mathrm{H^+}(a q) + 6 e^- \longrightarrow 2\mathrm{CrO}_{4}^{2-}(a q) + 6\mathrm{H_2O}(l)\) Reduction: \((3/2)(\mathrm{O}_{2}(g) + 4\mathrm{H}_2\mathrm{O}(l)+ 8\mathrm{H}^+(a q) + 4 e^-) \longrightarrow (3/2)\mathrm{H_2O}(l)\) So the new reduction half-reaction is: \(\frac{3}{2}\mathrm{O}_{2}(g) + 6\mathrm{H}_2\mathrm{O}(l)+ 12\mathrm{H}^+(a q) + 6 e^- \longrightarrow 3\mathrm{H_2O}(l)\)
15

Add the two half-reactions together

\(2\mathrm{Cr(OH)}_3(s) + \frac{3}{2}\mathrm{O}_{2}(g) + 6\mathrm{H}_2\mathrm{O}(l)+ 12\mathrm{H}^+(a q) \longrightarrow 2\mathrm{CrO}_{4}^{2-}(a q) + 9\mathrm{H_2O}(l)\) Now we need one additional step to account for the basic conditions:
16

Convert hydrogen ions into hydroxide ions

Add 12 OH- ions to both sides of the equation to remove the H+ ions. \(2\mathrm{Cr(OH)}_3(s) + \frac{3}{2}\mathrm{O}_{2}(g) + 12\mathrm{OH}^-(a q) \longrightarrow 2\mathrm{CrO}_{4}^{2-}(a q) + 9\mathrm{H_2O}(l) + 12\mathrm{OH}^-(a q)\) Combine the water and hydroxide ions to form 3 more water molecules. \(2\mathrm{Cr(OH)}_3(s) + \frac{3}{2}\mathrm{O}_{2}(g) \longrightarrow 2\mathrm{CrO}_{4}^{2-}(a q) + 12\mathrm{H_2O}(l)\) So the balanced redox equation in basic conditions is: \(2\mathrm{Cr(OH)}_3(s) + \frac{3}{2}\mathrm{O}_{2}(g) \longrightarrow 2\mathrm{CrO}_{4}^{2-}(a q) + 12\mathrm{H_2O}(l)\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free