A \(0.100 M\) solution of bromoacetic acid \(\left(\mathrm{BrCH}_{2} \mathrm{COOH}\right)\) is \(13.2 \%\) ionized. Calculate \(\left[\mathrm{H}^{+}\right],\left[\mathrm{BrCH}_{2} \mathrm{COO}^{-}\right],\left[\mathrm{BrCH}_{2} \mathrm{COOH}\right]\) and \(K_{a}\) for bromoacetic acid.

Short Answer

Expert verified
The concentrations of the species at equilibrium are: \([\mathrm{H}^{+}]\) = 0.0132 M, \([\mathrm{BrCH}_{2}\mathrm{COO}^{-}]\) = 0.0132 M, and \([\mathrm{BrCH}_{2} \mathrm{COOH}]\) = 0.0868 M. The ionization constant, \(K_a\), for bromoacetic acid is 0.00200.

Step by step solution

01

Write the ionization equation

The ionization of bromoacetic acid can be represented as follows: BrCH2COOH (aq) ⇌ H+ (aq) + BrCH2COO- (aq)
02

Determine initial concentrations

We are given that the initial concentration of BrCH2COOH is 0.100 M, so our starting concentrations are: [BrCH2COOH] = 0.100 M [H+] = 0 M [BrCH2COO–] = 0 M
03

Determine the change in concentrations due to ionization

Since the equilibrium is 13.2% ionized, we know that the concentration of H+ and BrCH2COO- at equilibrium is 13.2% of the initial concentration of BrCH2COOH (0.100 M). Therefore, the change in concentration for H+ and BrCH2COO- is: Δ[H+] = Δ[BrCH2COO–] = 0.100 M × 0.132 = 0.0132 M
04

Calculate the equilibrium concentrations

Now we need to find the equilibrium concentrations by calculating: [BrCH2COOH]_eq = initial [BrCH2COOH] - Δ[BrCH2COOH] = 0.100 M - 0.0132 M = 0.0868 M [H+]_eq = initial [H+] + Δ[H+] = 0 M + 0.0132 M = 0.0132 M [BrCH2COO–]_eq = initial [BrCH2COO–] + Δ[BrCH2COO–] = 0 M + 0.0132 M = 0.0132 M
05

Calculate Ka using the equilibrium concentrations

Now we'll use the equilibrium constant expression: Ka = \(\frac{[\mathrm{H}^{+}][\mathrm{BrCH}_{2}\mathrm{COO}^{-}]}{[\mathrm{BrCH}_{2}\mathrm{COOH}]}\) Plug in the equilibrium concentrations: Ka = \(\frac{(0.0132)(0.0132)}{(0.0868)}\) = 0.00200 The calculated value for Ka is 0.00200. To summarize, we have calculated: [H+] = 0.0132 M [BrCH2COO–] = 0.0132 M [BrCH2COOH] = 0.0868 M Ka = 0.00200

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Codeine \(\left(\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}\right)\) is a weak organic base. A \(5.0 \times 10^{-3} \mathrm{M}\) solution of codeine has a \(\mathrm{pH}\) of \(9.95 .\) Calculate the value of \(K_{b}\) for this substance. What is the \(\mathrm{p} K_{b}\) for this base?

Arrange the following \(0.10 \mathrm{M}\) solutions in order of increasing acidity (decreasing pH): (i) \(\mathrm{NH}_{4} \mathrm{NO}_{3}\) (ii) \(\mathrm{NaNO}_{3}\), (iii) $$ \mathrm{CH}_{3} \mathrm{COONH}_{4} \text { , (iv) } \mathrm{NaF} \text { , (v) } \mathrm{CH}_{3} \mathrm{COONa} \text { . } $$

Complete the following table by calculating the missing entries. In each case indicate whether the solution is acidic or basic. $$ \begin{array}{llll} \hline\left[\mathrm{H}^{+}\right] & \mathrm{OH}^{-} \text {(aq) } && \mathrm{pH} & &\text { pOH }&& \text { Acidic or basic? } \\ \hline 7.5 \times 10^{-3} \mathrm{M} & & & & \\ & 3.6 \times 10^{-10} \mathrm{M} & & \\ & && 8.25 & & \\ & & &&& 5.70 & \end{array} $$

Calculate the molar concentration of \(\mathrm{OH}^{-}\) ions in a \(0.075 \mathrm{M}\) solution of ethylamine \(\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2} ; K_{b}=6.4 \times 10^{-4}\right) .\) Calcu- late the \(\mathrm{pH}\) of this solution.

Identify the Lewis acid and Lewis base in each of the following reactions: (a) \(\mathrm{HNO}_{2}(a q)+\mathrm{OH}^{-}(a q) \rightleftharpoons \mathrm{NO}_{2}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)\) (b) \(\mathrm{FeBr}_{3}(s)+\mathrm{Br}^{-}(a q) \rightleftharpoons \mathrm{FeBr}_{4}^{-}(a q)\) (c) \(\mathrm{Zn}^{2+}(a q)+4 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}^{2+}(a q)\) (d) \(\mathrm{SO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}_{2} \mathrm{SO}_{3}(a q)\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free