\(\begin{array}{llll} \text { (a) The molar solubility of } \mathrm{PbBr}_{2} & \text { at } 25^{\circ} \mathrm{C} & \text { is }\end{array}\) \(1.0 \times 10^{-2} \mathrm{~mol} / \mathrm{L} .\) Calculate \(K_{s p} .(\mathbf{b})\) If \(0.0490 \mathrm{~g}\) of \(\mathrm{AgIO}_{3}\) dis- solves per liter of solution, calculate the solubility-product constant. (c) Using the appropriate \(K_{s p}\) value from Appendix \(\mathrm{D},\) calculate the \(\mathrm{pH}\) of a saturated solution of \(\mathrm{Ca}(\mathrm{OH})_{2}\)

Short Answer

Expert verified
(a) The solubility-product constant for \(\mathrm{PbBr}_2\) is \(K_{sp} = 4.0 \times 10^{-6}\). (b) The solubility-product constant for \(\mathrm{AgIO}_3\) is \(K_{sp} = 8.36 \times 10^{-8}\). (c) The pH of a saturated solution of \(\mathrm{Ca(OH)}_{2}\) is 12.18.

Step by step solution

01

(a) Calculate the solubility-product constant for \(\mathrm{PbBr}_2\)

1. Write the balanced dissolution reaction: \(\mathrm{PbBr}_{2(s)} \rightleftharpoons \mathrm{Pb}^{2+}_{(aq)} + 2 \mathrm{Br}^-_{(aq)}\) 2. Write the expression for solubility-product constant: \(K_{sp} = [\mathrm{Pb}^{2+}][\mathrm{Br}^-]^2\) 3. The molar solubility of \(\mathrm{PbBr}_2\) is \(1.0 \times 10^{-2} \mathrm{mol}/\mathrm{L}\). For each 1 mole of \(\mathrm{PbBr}_{2}\) dissolved, we have 1 mole of \(\mathrm{Pb}^{2+}\) and 2 moles of \(\mathrm{Br}^{-}\). Therefore, we have: \([\mathrm{Pb}^{2+}] = 1.0 \times 10^{-2} \mathrm{M}\) and \([\mathrm{Br}^-] = 2 \times 1.0 \times 10^{-2} \mathrm{M}\) 4. Substitute the concentrations into the \(K_{sp}\) expression: \(K_{sp} = (1.0 \times 10^{-2})(2 \times 1.0 \times 10^{-2})^2\) 5. Calculate the \(K_{sp}\): \(K_{sp} = 4.0 \times 10^{-6}\)
02

(b) Calculate the solubility-product constant for \(\mathrm{AgIO}_3\)

1. Write the balanced dissolution reaction: \(\mathrm{AgIO}_{3(s)} \rightleftharpoons \mathrm{Ag}^+_{(aq)} + \mathrm{IO}_3^-_{(aq)}\) 2. Write the expression for solubility-product constant: \(K_{sp} = [\mathrm{Ag}^+][\mathrm{IO}_3^-]\) 3. Calculate the molar solubility: Molar mass of \(\mathrm{AgIO}_{3} = 169.87 \mathrm{g/mol}\), so molar solubility = \(0.0490 \mathrm{g}/1 \mathrm{L} \cdot \frac{1 \text{ mole}}{169.87 \mathrm{g}} = 2.89 \times 10^{-4} \mathrm{M}\) 4. Since the dissolution reaction is a 1:1 ratio, \([\mathrm{Ag}^+] = [\mathrm{IO}_3^-] = 2.89 \times 10^{-4} \mathrm{M}\) 5. Substitute the concentrations into the \(K_{sp}\) expression: \(K_{sp} = 2.89 \times 10^{-4} \cdot 2.89 \times 10^{-4}\) 6. Calculate the \(K_{sp}\): \(K_{sp} = 8.36 \times 10^{-8}\)
03

(c) Calculate the pH of saturated \(\mathrm{Ca(OH)}_{2}\) solution

1. From Appendix D, find the \(K_{sp}\) of \(\mathrm{Ca(OH)}_{2}\): \(K_{sp} = 5.5 \times 10^{-6}\) 2. Write the balanced dissolution reaction: \(\mathrm{Ca(OH)}_{2(s)} \rightleftharpoons \mathrm{Ca}^{2+}_{(aq)} + 2 \mathrm{OH}^-_{(aq)}\) 3. Write the expression for solubility-product constant: \(K_{sp} = [\mathrm{Ca}^{2+}][\mathrm{OH}^-]^2\) 4. Since \([\mathrm{Ca}^{2+}] = s\), and \([\mathrm{OH}^-] = 2s\), we can rewrite the \(K_{sp}\) expression as: \(K_{sp} = s(2s)^2\) 5. Substitute the \(K_{sp}\) value and solve for s: \(5.5 \times 10^{-6} = s(2s)^2\) 6. Calculate the molar solubility "s": \(s = 7.61 \times 10^{-3} \mathrm{M}\) 7. Calculate the concentration of \(\mathrm{OH}^-\): \([\mathrm{OH}^-] = 2s = 2 \times 7.61 \times 10^{-3} \mathrm{M} = 1.52 \times 10^{-2} \mathrm{M}\) 8. Calculate the pOH value: \(pOH = -\log_{10}([\mathrm{OH}^-]) = -\log_{10}(1.52 \times 10^{-2}) = 1.82 \) 9. Calculate the pH value: \(pH = 14 - pOH = 14 - 1.82 = 12.18\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free