Complete and balance the following half-reactions. In each case indicate whether the half-reaction is an oxidation or a reduction. (a) \(\mathrm{Sn}^{2+}(a q) \longrightarrow \mathrm{Sn}^{4+}(a q)\) (acidic solution) (b) \(\mathrm{TiO}_{2}(s) \longrightarrow \mathrm{Ti}^{2+}(a q)\) (acidic solution) (c) \(\mathrm{ClO}_{3}^{-}(a q) \longrightarrow \mathrm{Cl}^{-}(a q)\) (acidic solution) (d) \(\mathrm{N}_{2}(g) \longrightarrow \mathrm{NH}_{4}^{+}(a q)\) (acidic solution) (e) \(\mathrm{OH}^{-}(a q) \longrightarrow \mathrm{O}_{2}(g)\) (basic solution) (f \(\mathrm{SO}_{3}^{2-}(a q) \longrightarrow \mathrm{SO}_{4}^{2-}(a q)\) (basic solution) (g) \(\mathrm{N}_{2}(g) \longrightarrow \mathrm{NH}_{3}(g)\) (basic solution)

Short Answer

Expert verified
(a) \(\mathrm{Sn}^{2+}(a q) \longrightarrow \mathrm{Sn}^{4+}(a q) + 2\mathrm{e}^-\) (Oxidation) (b) \(2\mathrm{e}^- + \mathrm{TiO}_{2}(s) + 4\mathrm{H}^+ \longrightarrow \mathrm{Ti}^{2+}(a q) + 2\mathrm{H}_{2}\mathrm{O}(l)\) (Reduction) (c) \(\mathrm{ClO}_{3}^{-}(a q) + 6\mathrm{e}^- + 6\mathrm{H}^{+} \longrightarrow \mathrm{Cl}^{-}(a q) + 3\mathrm{H}_{2}\mathrm{O}(l)\) (Reduction) (d) \(3\mathrm{e}^- + \mathrm{N}_{2}(g) + 6\mathrm{H}^{+} \longrightarrow 2\mathrm{NH}_{4}^{+}(a q)\) (Reduction) (e) \(2\mathrm{OH}^{-}(aq) \longrightarrow \mathrm{O}_{2}(g) + 2\mathrm{H}_{2}\mathrm{O}(l) + 4\mathrm{e}^-\) (Oxidation) (f) \(\mathrm{SO}_{3}^{2-}(a q) + \mathrm{H}_{2}\mathrm{O}(l) \longrightarrow \mathrm{SO}_{4}^{2-}(a q) + 2\mathrm{H}^{+} + 2\mathrm{e}^-\) (Oxidation) (g) \(6\mathrm{e}^- + \mathrm{N}_{2}(g) + 6\mathrm{H}_{2}\mathrm{O}(l) \longrightarrow 2\mathrm{NH}_{3}(g) + 12\mathrm{OH}^{-}(a q)\) (Reduction)

Step by step solution

01

Determine the oxidation numbers

We can see that Sn is going from an oxidation number of +2 to +4.
02

Identify if oxidation or reduction

Since the oxidation number is increasing, this is an oxidation half-reaction.
03

Complete and balance the remainder of the atoms

There are no other atoms to balance in this half-reaction.
04

Balance the oxygen atoms

There are no oxygen atoms in this half-reaction.
05

Balance the hydrogen atoms

There are no hydrogen atoms in this half-reaction.
06

Balance the charge

The charge on the left side is +2, and the charge on the right side is +4. To balance the charges, we must add 2 electrons (e-) to the right side: \[\mathrm{Sn}^{2+} \longrightarrow \mathrm{Sn}^{4+} + 2\mathrm{e}^-\]
07

Check that the half-reaction is balanced

Both the atoms and charge are balanced in the half-reaction: \[\mathrm{Sn}^{2+}(a q) \longrightarrow \mathrm{Sn}^{4+}(a q) + 2\mathrm{e}^-\] (Oxidation) (b) \(\mathrm{TiO}_{2}(s) \longrightarrow \mathrm{Ti}^{2+}(a q)\) (acidic solution)
08

Determine the oxidation numbers

In TiO2, Ti has an oxidation number of +4. In Ti^{2+}, the oxidation number is +2.
09

Identify if oxidation or reduction

Since the oxidation number is decreasing, this is a reduction half-reaction.
10

Complete and balance the remainder of the atoms

We have 1 Ti atom on both sides.
11

Balance the oxygen atoms

There are 2 oxygen atoms on the left side, so we add 2 H2O molecules to the right side: \[\mathrm{TiO}_{2}(s) \longrightarrow \mathrm{Ti}^{2+}(a q) + 2\mathrm{H}_{2}\mathrm{O}(l)\]
12

Balance the hydrogen atoms

There are 4 hydrogen atoms on the right side. We add 4 H+ ions to the left side: \[\mathrm{TiO}_{2}(s) + 4\mathrm{H}^+ \longrightarrow \mathrm{Ti}^{2+}(a q) + 2\mathrm{H}_{2}\mathrm{O}(l)\]
13

Balance the charge

The charge on the left side is +4, and the charge on the right side is +2. To balance the charges, we must add 2 electrons (e-) to the left side: \[2\mathrm{e}^- + \mathrm{TiO}_{2}(s) + 4\mathrm{H}^+ \longrightarrow \mathrm{Ti}^{2+}(a q) + 2\mathrm{H}_{2}\mathrm{O}(l)\]
14

Check that the half-reaction is balanced

The atoms and charge are balanced in the half-reaction: \[2\mathrm{e}^- + \mathrm{TiO}_{2}(s) + 4\mathrm{H}^+ \longrightarrow \mathrm{Ti}^{2+}(a q) + 2\mathrm{H}_{2}\mathrm{O}(l)\] (Reduction) Complete the remaining half-reactions (c) through (g) following the same steps. _Result_ (c) \[\mathrm{ClO}_{3}^{-}(a q) + 6\mathrm{e}^- + 6\mathrm{H}^{+} \longrightarrow \mathrm{Cl}^{-}(a q) + 3\mathrm{H}_{2}\mathrm{O}(l)\] (Reduction) (d) \[3\mathrm{e}^- + \mathrm{N}_{2}(g) + 6\mathrm{H}^{+} \longrightarrow 2\mathrm{NH}_{4}^{+}(a q)\] (Reduction) (e) \[2\mathrm{OH}^{-}(aq) \longrightarrow \mathrm{O}_{2}(g) + 2\mathrm{H}_{2}\mathrm{O}(l) + 4\mathrm{e}^-\] (Oxidation) (f) \[\mathrm{SO}_{3}^{2-}(a q) + \mathrm{H}_{2}\mathrm{O}(l) \longrightarrow \mathrm{SO}_{4}^{2-}(a q) + 2\mathrm{H}^{+} + 2\mathrm{e}^-\] (Oxidation) (g) \[6\mathrm{e}^- + \mathrm{N}_{2}(g) + 6\mathrm{H}_{2}\mathrm{O}(l) \longrightarrow 2\mathrm{NH}_{3}(g) + 12\mathrm{OH}^{-}(a q)\] (Reduction)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Using the standard reduction potentials listed in Appendix \(\mathrm{E}\), calculate the equilibrium constant for each of the following reactions at \(298 \mathrm{~K}\) : $$ \text { (a) } \mathrm{Cu}(s)+2 \mathrm{Ag}^{+}(a q) \longrightarrow \mathrm{Cu}^{2+}(a q)+2 \mathrm{Ag}(s) $$ (b) \(3 \mathrm{Ce}^{4+}(a q)+\mathrm{Bi}(s)+\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow\) $$ 3 \mathrm{Ce}^{3+}(a q)+\mathrm{BiO}^{+}(a q)+2 \mathrm{H}^{+}(a q) $$ (c) \(\mathrm{N}_{2} \mathrm{H}_{5}^{+}(a q)+4 \mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-}(a q) \longrightarrow\) $$ \mathrm{N}_{2}(g)+5 \mathrm{H}^{+}(a q)+4 \mathrm{Fe}(\mathrm{CN})_{6}^{4-}(a q) $$

(a) Why is it impossible to measure the standard reduction potential of a single half-reaction? (b) Describe how the standard reduction potential of a half-reaction can be determined.

(a) What does the term electromotive force mean? (b) What is the definition of the volt? (c) What does the term cell potential mean?

Gold exists in two common positive oxidation states, +1 and +3. The standard reduction potentials for these oxidation states are $$ \begin{aligned} \mathrm{Au}^{+}(a q)+\mathrm{e}^{-} \longrightarrow \mathrm{Au}(s) & E_{\mathrm{red}}^{o}=+1.69 \mathrm{~V} \\ \mathrm{Au}^{3+}(a q)+3 \mathrm{e}^{-} \longrightarrow \mathrm{Au}(s) & E_{\mathrm{red}}^{\circ}=+1.50 \mathrm{~V} \end{aligned} $$ (a) Can you use these data to explain why gold does not tarnish in the air? (b) Suggest several substances that should be strong enough oxidizing agents to oxidize gold metal. (c) Miners obtain gold by soaking gold-containing ores in an aqueous solution of sodium cyanide. A very soluble complex ion of gold forms in the aqueous solution because of the redox reaction $$ \begin{aligned} 4 \mathrm{Au}(s)+8 \mathrm{NaCN}(a q)+& 2 \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{O}_{2}(g) \longrightarrow \\ & 4 \mathrm{Na}\left[\mathrm{Au}(\mathrm{CN})_{2}\right](a q)+4 \mathrm{NaOH}(a q) \end{aligned} $$ What is being oxidized and what is being reduced in this reaction? (d) Gold miners then react the basic aqueous product solution from part (c) with Zn dust to get gold metal. Write a balanced redox reaction for this process. What is being oxidized, and what is being reduced?

A plumber's handbook states that you should not connect a brass pipe directly to a galvanized steel pipe because electrochemical reactions between the two metals will cause corrosion. The handbook recommends you use instead an insulating fitting to connect them. Brass is a mixture of copper and zinc. What spontaneous redox reaction(s) might cause the corrosion? Justify your answer with standard emf calculations.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free