Chapter 20: Problem 34
(a) Why is it impossible to measure the standard reduction potential of a single half-reaction? (b) Describe how the standard reduction potential of a half-reaction can be determined.
Chapter 20: Problem 34
(a) Why is it impossible to measure the standard reduction potential of a single half-reaction? (b) Describe how the standard reduction potential of a half-reaction can be determined.
All the tools & learning materials you need for study success - in one app.
Get started for freeGiven the following reduction half-reactions: $$ \mathrm{Fe}^{3+}(a q)+\mathrm{e}^{-} \longrightarrow \mathrm{Fe}^{2+}(a q) $$ \(E_{\mathrm{red}}^{\circ}=+0.77 \mathrm{~V}\) $$ \mathrm{S}_{2} \mathrm{O}_{6}{ }^{2-}(a q)+4 \mathrm{H}^{+}(a q)+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{H}_{2} \mathrm{SO}_{3}(a q) $$ \(E_{\mathrm{red}}^{\circ}=+0.60 \mathrm{~V}\) $$ \begin{array}{r} \mathrm{N}_{2} \mathrm{O}(g)+2 \mathrm{H}^{+}(a q)+2 \mathrm{e}^{-} \longrightarrow \mathrm{N}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l) \\ E_{\mathrm{red}}^{\circ}=-1.77 \mathrm{~V} \\ \mathrm{VO}_{2}^{+}(a q)+2 \mathrm{H}^{+}(a q)+\mathrm{e}^{-} \longrightarrow \mathrm{VO}^{2+}+\mathrm{H}_{2} \mathrm{O}(l) \\ E_{\mathrm{red}}^{\circ}=+1.00 \mathrm{~V} \end{array} $$ (a) Write balanced chemical equations for the oxidation of \(\mathrm{Fe}^{2+}(a q)\) by \(\mathrm{S}_{2} \mathrm{O}_{6}{ }^{2-}(a q),\) by \(\mathrm{N}_{2} \mathrm{O}(a q),\) and by \(\mathrm{VO}_{2}{ }^{+}(a q) .(\mathbf{b})\) Calculate \(\Delta G^{\circ}\) for each reaction at \(298 \mathrm{~K}\). (c) Calculate the equilibrium constant \(K\) for each reaction at \(298 \mathrm{~K}\).
(a) What is the difference between a battery and a fuel cell? (b) Can the "fuel" of a fuel cell be a solid? Explain.
Using standard reduction potentials (Appendix E), calculate the standard emf for each of the following reactions: $$ \begin{array}{l} \text { (a) } \mathrm{Cl}_{2}(g)+2 \mathrm{I}^{-}(a q) \longrightarrow 2 \mathrm{Cl}^{-}(a q)+\mathrm{I}_{2}(s) \\ \text { (b) } \mathrm{Ni}(s)+2 \mathrm{Ce}^{4+}(a q) \longrightarrow \mathrm{Ni}^{2+}(a q)+2 \mathrm{Ce}^{3+}(a q) \\ \text { (c) } \mathrm{Fe}(s)+2 \mathrm{Fe}^{3+}(a q) \longrightarrow 3 \mathrm{Fe}^{2+}(a q) \\ \text { (d) } 2 \mathrm{NO}_{3}^{-}(a q)+8 \mathrm{H}^{+}(a q)+3 \mathrm{Cu}(s) \longrightarrow \\ 2 \mathrm{NO}(g)+4 \mathrm{H}_{2} \mathrm{O}(l)+3 \mathrm{Cu}^{2+}(a q) \end{array} $$
This oxidation-reduction reaction in acidic solution is spontaneous: $$ \begin{array}{r} 5 \mathrm{Fe}^{2+}(a q)+\mathrm{MnO}_{4}^{-}(a q)+8 \mathrm{H}^{+}(a q) \longrightarrow \\ 5 \mathrm{Fe}^{3+}(a q)+\mathrm{Mn}^{2+}(a q)+4 \mathrm{H}_{2} \mathrm{O}(l) \end{array} $$ A solution containing \(\mathrm{KMnO}_{4}\) and \(\mathrm{H}_{2} \mathrm{SO}_{4}\) is poured into one beaker, and a solution of \(\mathrm{FeSO}_{4}\) is poured into another. A salt bridge is used to join the beakers. A platinum foil is placed in each solution, and a wire that passes through a voltmeter connects the two solutions. (a) Sketch the cell, indicating the anode and the cathode, the direction of electron movement through the external circuit, and the direction of ion migrations through the solutions. (b) Sketch the process that occurs at the atomic level at the surface of the anode. (c) Calculate the emf of the cell under standard conditions. (d) Calculate the emf of the cell at \(298 \mathrm{~K}\) when the concentrations are the fol- $$ \text { lowing: } \mathrm{pH}=0.0,\left[\mathrm{Fe}^{2+}\right]=0.10 \mathrm{M},\left[\mathrm{MnO}_{4}^{-}\right]=1.50 \mathrm{M} $$ \(\left[\mathrm{Fe}^{3+}\right]=2.5 \times 10^{-4} \mathrm{M},\left[\mathrm{Mn}^{2+}\right]=0.001 \mathrm{M}\)
(a) Magnesium metal is used as a sacrificial anode to protect underground pipes from corrosion. Why is the magnesium referred to as a "sacrificial anode"? (b) Looking in Appendix \(\mathrm{E}\); suggest what metal the underground pipes could be made from in order for magnesium to be successful as a sacrificial anode.
What do you think about this solution?
We value your feedback to improve our textbook solutions.