Based on the following atomic mass values \(-1 \mathrm{H}\), 1.00782 amu; \({
}^{2} \mathrm{H}, 2.01410 \mathrm{amu} ;{ }^{3} \mathrm{H}, 3.01605
\mathrm{amu} ;{ }^{3} \mathrm{He}\)
3.01603 amu; \({ }^{4}\) He, 4.00260 amu- and the mass of the neutron given in
the text, calculate the energy released per mole in each of the following
nuclear reactions, all of which are possibilities for a controlled fusion
process:
(a) \({ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \longrightarrow{ }_{2}^{4}
\mathrm{He}+{ }_{0}^{1} \mathrm{n}\)
(b) \({ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \longrightarrow{ }_{2}^{3}
\mathrm{He}+{ }_{0}^{1} \mathrm{n}\)
(c) \({ }_{1}^{2} \mathrm{H}+{ }_{2}^{3} \mathrm{He} \longrightarrow{ }_{2}^{4}
\mathrm{He}+{ }_{1}^{1} \mathrm{H}\)