Chapter 21: Problem 50
Based on the following atomic mass values \(-1 \mathrm{H}\), 1.00782 amu; \({ }^{2} \mathrm{H}, 2.01410 \mathrm{amu} ;{ }^{3} \mathrm{H}, 3.01605 \mathrm{amu} ;{ }^{3} \mathrm{He}\) 3.01603 amu; \({ }^{4}\) He, 4.00260 amu- and the mass of the neutron given in the text, calculate the energy released per mole in each of the following nuclear reactions, all of which are possibilities for a controlled fusion process: (a) \({ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \longrightarrow{ }_{2}^{4} \mathrm{He}+{ }_{0}^{1} \mathrm{n}\) (b) \({ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \longrightarrow{ }_{2}^{3} \mathrm{He}+{ }_{0}^{1} \mathrm{n}\) (c) \({ }_{1}^{2} \mathrm{H}+{ }_{2}^{3} \mathrm{He} \longrightarrow{ }_{2}^{4} \mathrm{He}+{ }_{1}^{1} \mathrm{H}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.