Chapter 20: Problem 40
Given the following half-reactions and associated standard reduction potentials: $$ \begin{array}{c}{\text { AuBr }_{4}^{-}(a q)+3 \mathrm{e}^{-} \longrightarrow \mathrm{Au}(s)+4 \mathrm{Br}^{-}(a q)} \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad {E_{\mathrm{red}}^{\circ}=-0.86 \mathrm{V}} \\ {\mathrm{Eu}^{3+}(a q)+\mathrm{e}^{-} \longrightarrow \mathrm{Eu}^{2+}(a q)} \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad {E_{\mathrm{red}}^{\circ}=-0.43 \mathrm{V}}\end{array} $$ $$ \begin{array}{r}{\mathrm{IO}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)+2 \mathrm{e}^{-} \longrightarrow \mathrm{I}^{-}(a q)+2 \mathrm{OH}^{-}(a q)} \\\ {E_{\mathrm{red}}^{\circ}=+0.49 \mathrm{V}}\end{array} $$ (a) Write the equation for the combination of these half-cell reactions that leads to the largest positive emf and calculate the value. (b) Write the equation for the combination of half-cell reactions that leads to the smallest positive emf and calculate that value.