The Sun supplies about 1.0 kilowatt of energy for each square meter of surface
area \(\left(1.0 \mathrm{kW} / \mathrm{m}^{2},\) where a watt \(=1 \mathrm{J} /
\mathrm{s}\right)\) Plants produce the equivalent of about 0.20 \(\mathrm{g}\) of
sucrose \(\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)\) per
hour per square meter. Assuming that the sucrose is produced as follows,
calculate the percentage of sunlight used to produce sucrose.
$$\begin{array}{c}{12 \mathrm{CO}_{2}(g)+11 \mathrm{H}_{2} \mathrm{O}(l)
\longrightarrow \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+12
\mathrm{O}_{2}(g)} \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad
\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad
{\Delta H=5645 \mathrm{kJ}}\end{array}$$