For each of the following gas-phase reactions, indicate how the rate of disappearance of each reactant is related to the rate of appearance of each product: (a) $\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$ (b) \(2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g) \longrightarrow 2 \mathrm{NOCl}(g)\) (c) $\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)$ (d) \(\mathrm{N}_{2} \mathrm{O}_{4}(g) \longrightarrow 2 \mathrm{NO}_{2}(g)\)

Short Answer

Expert verified
For each of the given gas-phase reactions, the rate of disappearance of each reactant is related to the rate of appearance of each product as follows: (a) \(-\frac{d[\mathrm{CO}]}{dt} = +\frac{d[\mathrm{CO}_{2}]}{dt} = -\frac{d[\mathrm{H}_{2} \mathrm{O}]}{dt} = +\frac{d[\mathrm{H}_{2}]}{dt}\) (b) \(-\frac{1}{2} \frac{d[\mathrm{NO}]}{dt} = -\frac{d[\mathrm{Cl}_{2}]}{dt} = +\frac{1}{2} \frac{d[\mathrm{NOCl}]}{dt}\) (c) \(-\frac{d[\mathrm{CH}_{4}]}{dt} = -\frac{1}{2} \frac{d[\mathrm{O}_{2}]}{dt} = +\frac{d[\mathrm{CO}_{2}]}{dt} = +\frac{1}{2} \frac{d[\mathrm{H}_{2} \mathrm{O}]}{dt}\) (d) \(-\frac{1}{2} \frac{d[\mathrm{N}_{2} \mathrm{O}_{4}]}{dt} = +\frac{d[\mathrm{NO}_{2}]}{dt}\)

Step by step solution

01

(a) Reaction: \(\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})\)

The rate of disappearance of reactants CO and H₂O, and rate of appearance of products CO₂ and H₂ can be related as follows: \[ -\frac{d[\mathrm{CO}]}{dt} = +\frac{d[\mathrm{CO}_{2}]}{dt} = -\frac{d[\mathrm{H}_{2} \mathrm{O}]}{dt} = +\frac{d[\mathrm{H}_{2}]}{dt} \]
02

(b) Reaction: \(2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g) \longrightarrow 2 \mathrm{NOCl}(g)\)

The rate of disappearance of reactants NO and Cl₂, and rate of appearance of product NOCl can be related as follows: \[ -\frac{1}{2} \frac{d[\mathrm{NO}]}{dt} = -\frac{d[\mathrm{Cl}_{2}]}{dt} = +\frac{1}{2} \frac{d[\mathrm{NOCl}]}{dt} \]
03

(c) Reaction: \(\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)\)

The rate of disappearance of reactants CH₄ and O₂, and rate of appearance of products CO₂ and H₂O can be related as follows: \[ -\frac{d[\mathrm{CH}_{4}]}{dt} = -\frac{1}{2} \frac{d[\mathrm{O}_{2}]}{dt} = +\frac{d[\mathrm{CO}_{2}]}{dt} = +\frac{1}{2} \frac{d[\mathrm{H}_{2} \mathrm{O}]}{dt} \]
04

(d) Reaction: \(\mathrm{N}_{2} \mathrm{O}_{4}(g) \longrightarrow 2 \mathrm{NO}_{2}(g)\)

The rate of disappearance of reactant N₂O₄, and rate of appearance of product NO₂ can be related as follows: \[ -\frac{1}{2} \frac{d[\mathrm{N}_{2} \mathrm{O}_{4}]}{dt} = +\frac{d[\mathrm{NO}_{2}]}{dt} \]

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The oxidation of \(\mathrm{SO}_{2}\) to \(\mathrm{SO}_{3}\) is accelerated by \(\mathrm{NO}_{2}\). The reaction proceeds according to: $$ \begin{array}{l} \mathrm{NO}_{2}(g)+\mathrm{SO}_{2}(g) \longrightarrow \mathrm{NO}(g)+\mathrm{SO}_{3}(g) \\ 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{NO}_{2}(g) \end{array} $$ (a) Show that, with appropriate coefficients, the two reactions can be summed to give the overall oxidation of \(\mathrm{SO}_{2}\) by \(\mathrm{O}_{2}\) to give \(\mathrm{SO}_{3} .\) (b) Do we consider \(\mathrm{NO}_{2}\) a catalyst or an intermediate in this reaction? (c) Would you classify NO as a catalyst or as an intermediate? (d) Is this an example of homogeneous catalysis or heterogeneous catalysis?

Hydrogen sulfide \(\left(\mathrm{H}_{2} \mathrm{~S}\right)\) is a common and troublesome pollutant in industrial wastewaters. One way to remove \(\mathrm{H}_{2} \mathrm{~S}\) is to treat the water with chlorine, in which case the following reaction occurs: $$ \mathrm{H}_{2} \mathrm{~S}(a q)+\mathrm{Cl}_{2}(a q) \longrightarrow \mathrm{S}(s)+2 \mathrm{H}^{+}(a q)+2 \mathrm{Cl}^{-}(a q) $$ The rate of this reaction is first order in each reactant. The rate constant for the disappearance of \(\mathrm{H}_{2} \mathrm{~S}\) at $30{ }^{\circ} \mathrm{C}\( is \)4.0 \times 10^{-2} M^{-1} \mathrm{~s}^{-1}$. If at a given time the concentration of \(\mathrm{H}_{2} \mathrm{~S}\) is $2.5 \times 10^{-4} \mathrm{M}\( and that of \)\mathrm{Cl}_{2}\( is \)2.0 \times 10^{-2} \mathrm{M},$ what is the rate of formation of \(\mathrm{H}^{+}\) ?

The reaction $2 \mathrm{ClO}_{2}(a q)+2 \mathrm{OH}^{-}(a q) \longrightarrow \mathrm{ClO}_{3}^{-}(a q)+\( \)\mathrm{ClO}_{2}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$ was studied with the following results: $$ \begin{array}{lccc} \hline \text { Experiment } & {\left[\mathrm{CIO}_{2}\right](M)} & {\left[\mathrm{OH}^{-}\right](M)} & \text { Initial Rate }(M / s) \\ \hline 1 & 0.060 & 0.030 & 0.0248 \\ 2 & 0.020 & 0.030 & 0.00276 \\ 3 & 0.020 & 0.090 & 0.00828 \\ \hline \end{array} $$ (a) Determine the rate law for the reaction. (b) Calculate the rate constant with proper units. (c) Calculate the rate when \(\left[\mathrm{ClO}_{2}\right]=0.100 \mathrm{M}\) and \(\left[\mathrm{OH}^{-}\right]=0.050 \mathrm{M}\)

Urea \(\left(\mathrm{NH}_{2} \mathrm{CONH}_{2}\right)\) is the end product in protein metabolism in animals. The decomposition of urea in $0.1 \mathrm{M} \mathrm{HCl}$ occurs according to the reaction $$ \mathrm{NH}_{2} \mathrm{CONH}_{2}(a q)+\mathrm{H}^{+}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l) \longrightarrow 2 \mathrm{NH}_{4}^{+}(a q)+\mathrm{HCO}_{3}^{-}(a q) $$ The reaction is first order in urea and first order overall. When \(\left[\mathrm{NH}_{2} \mathrm{CONH}_{2}\right]=0.200 \mathrm{M},\) the rate at \(61.05^{\circ} \mathrm{C}\) $$ \text { is } 8.56 \times 10^{-5} \mathrm{M} / \mathrm{s} $$ (a) What is the rate constant, \(k\) ? (b) What is the concentration of urea in this solution after $4.00 \times 10^{3} \mathrm{~s}\( if the starting concentration is \)0.500 \mathrm{M}$ ? (c) What is the half-life for this reaction at \(61.05^{\circ} \mathrm{C}\) ?

(a) The reaction $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(a q)+\( \)\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(a q)$ is first order with in \(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(a q)\) and zero-order in \(\mathrm{H}_{2} \mathrm{O}\). At \(300 \mathrm{~K}\) the rate constant equals \(3.30 \times 10^{-2} \mathrm{~min}^{-1} .\) Calculate the half- life at this temperature. \((\mathbf{b})\) If the activation energy for this reaction is \(80.0 \mathrm{~kJ} / \mathrm{mol}\), at what temperature would the reaction rate be doubled?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free