Problem 23

The equilibrium constant for the reaction $$2 \mathrm{NO}(g)+\mathrm{Br}_{2}(g) \rightleftharpoons 2 \mathrm{NOBr}(g)$$ is \(K_{c}=1.3 \times 10^{-2}\) at \(1000 \mathrm{~K}\). (a) At this temperature does the equilibrium favor \(\mathrm{NO}\) and \(\mathrm{Br}_{2}\), or does it favor NOBr? (b) Calculate \(K_{c}\) for $2 \mathrm{NOBr}(g) \rightleftharpoons 2 \mathrm{NO}(g)+\mathrm{Br}_{2}(g) .$ (c) Calculate \(K_{c}\) for $\mathrm{NOBr}(g) \rightleftharpoons \mathrm{NO}(g)+\frac{1}{2} \mathrm{Br}_{2}(g)$.

Problem 24

Consider the following equilibrium: $2 \mathrm{H}_{2}(g)+\mathrm{S}_{2}(g) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{~S}(g) \quad K_{c}=1.08 \times 10^{7}\( at \)700^{\circ} \mathrm{C}$ (a) Calculate \(K_{p \cdot}\) (b) Does the equilibrium mixture contain mostly \(\mathrm{H}_{2}\) and \(\mathrm{S}_{2}\) or mostly $\mathrm{H}_{2} \mathrm{~S} ?(\mathbf{c})\( Calculatethevalue of \)K_{c}$ if you rewrote the equation $\mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{~S}_{2}(g) \rightleftharpoons \mathrm{H}_{2} \mathrm{~S}(g)$

Problem 26

Consider the following equilibrium, for which \(K_{p}=7.62\) at $480^{\circ} \mathrm{C}:$ $$2 \mathrm{Cl}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons 4 \mathrm{HCl}(g)+\mathrm{O}_{2}(g)$$ (a) What is the value of \(K_{p}\) for the reaction $4 \mathrm{HCl}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{Cl}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g) ?$ (b) What is the value of \(K_{p}\) for the reaction $\mathrm{Cl}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons 2 \mathrm{HCl}(g)+\frac{1}{2} \mathrm{O}_{2}(g) ?$ (c) What is the value of \(K_{c}\) for the reaction in part (b)?

Problem 27

The following equilibria were attained at \(298 \mathrm{~K}:\) $$\begin{array}{c} \mathrm{Ag}^{+}(a q)+\mathrm{Cl}^{-}(a q) \rightleftharpoons \mathrm{AgCl}(s) \quad K_{c}=5.6 \times 10^{9} \\ \mathrm{Ag}^{+}(a q)+2 \mathrm{NH}_{3}(a q) \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}(a q) \\ K_{c}=1.6 \times 10^{7}\end{array}$$ Based on these equilibria, calculate the equilibrium constant $\text { for } \mathrm{AgCl}(s)+2 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}(a q)+\mathrm{Cl}^{-}(a q)$ at \(298 \mathrm{~K}\).

Problem 28

Consider the equilibrium $$\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g)+\mathrm{Br}_{2}(g) \rightleftharpoons 2 \mathrm{NOBr}(g) $$ Calculate the equilibrium constant \(K_{p}\) for this reaction, given the following information (at \(298 \mathrm{~K}\) ): $$ \begin{array}{l} 2 \mathrm{NO}(g)+\mathrm{Br}_{2}(g) \rightleftharpoons 2 \mathrm{NOBr}(g) \quad K_{c}=2.0 \\ 2 \mathrm{NO}(g) \rightleftharpoons \mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \quad K_{c}=2.1 \times 10^{30} \end{array} $$

Problem 29

Mercury(I) oxide decomposes into elemental mercury and elemental oxygen: $2 \mathrm{Hg}_{2} \mathrm{O}(s) \rightleftharpoons 4 \mathrm{Hg}(l)+\mathrm{O}_{2}(g)$. (a) Write the equilibrium-constant expression for this reaction in terms of partial pressures. (b) Suppose you run this reaction in a solvent that dissolves elemental mercury and elemental oxygen. Rewrite the equilibriumconstant expression in terms of molarities for the reaction, using (solv) to indicate solvation.

Problem 30

Consider the equilibrium $\mathrm{Na}_{2} \mathrm{O}(s)+\mathrm{SO}_{2}(g) \rightleftharpoons\( \)\mathrm{Na}_{2} \mathrm{SO}_{3}(s) .(\mathbf{a})$ Write the equilibrium-constant expression for this reaction in terms of partial pressures. (b) All the compounds in this reaction are soluble in water. Rewrite the equilibrium-constant expression in terms of molarities for the aqueous reaction.

Problem 31

Methanol \(\left(\mathrm{CH}_{3} \mathrm{OH}\right)\) is produced commercially by the catalyzed reaction of carbon monoxide and hydrogen: $\mathrm{CO}(g)+2 \mathrm{H}_{2}(g) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(g) .$ An equilibrium mixture in a 10.00-L vessel is found to contain \(0.050 \mathrm{~mol}\) $\mathrm{CH}_{3} \mathrm{OH}, 0.850 \mathrm{~mol} \mathrm{CO},\( and \)0.750 \mathrm{~mol} \mathrm{H}_{2}\( at \)500 \mathrm{~K}\(. Calculate \)K_{c}$ at this temperature.

Problem 32

Gaseous hydrogen iodide is placed in a closed container at $450^{\circ} \mathrm{C},\( where it partially decomposes to hydrogen and iodine: \)2 \mathrm{HI}(g) \rightleftharpoons \mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) .$ At equilibrium it is found that $[\mathrm{HI}]=4.50 \times 10^{3} \mathrm{M},\left[\mathrm{H}_{2}\right]=5.75 \times 10^{4} \mathrm{M}$, and \(\left[\mathrm{I}_{2}\right]=5.75 \times 10^{-4} \mathrm{M}\). What is the value of \(K_{c}\) at this temperature?

Problem 33

The equilibrium $2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g) \rightleftharpoons 2 \mathrm{NOCl}(g)\( is established at \)550 \mathrm{~K}$. An equilibrium mixture of the three gases has partial pressures of $10.13 \mathrm{kPa}, 20.27 \mathrm{kPa}\(, and \)35.46 \mathrm{kPa}\( for \)\mathrm{NO}, \mathrm{Cl}_{2},$ and \(\mathrm{NOCl}\), respectively.(a) Calculate \(K_{p}\) for this reaction at \(500.0 \mathrm{~K}\). (b) If the vessel has a volume of \(5.00 \mathrm{~L},\) calculate \(K_{c}\) at this temperature.

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Chemistry Textbooks