At \(2000^{\circ} \mathrm{C}\), the equilibrium constant for the reaction $2 \mathrm{NO}(g) \rightleftharpoons \mathrm{N}_{2}(g)+\mathrm{O}_{2}(g)$ is \(K_{c}=2.4 \times 10^{3} .\) If the initial concentration of NO is \(0.250 \mathrm{M}\), what are the equilibrium concentrations of \(\mathrm{NO}, \mathrm{N}_{2}\), and \(\mathrm{O}_{2}\) ?

Short Answer

Expert verified
At equilibrium, the concentrations for the given reaction are approximately \(\mathrm{[NO]} \approx 0.098\:M\), \(\mathrm{[N}_{2}] \approx 0.076\:M\), and \(\mathrm{[O}_{2}] \approx 0.076\:M\).

Step by step solution

01

Write down the initial concentrations

Initially, we are given the concentration of \(\mathrm{NO}\) which is 0.250 M. The concentrations of \(\mathrm{N}_{2}\) and \(\mathrm{O}_{2}\) are not given, so we can assume they are initially 0 M. \[\mathrm{NO} \: \: (0.250\: M) \] \[\mathrm{N}_{2} \: \: (0 \: M)\] \[\mathrm{O}_{2} \: \: (0 \: M)\]
02

Set up the ICE table

Using the ICE table, we will write down the changes in the concentrations as the reaction proceeds: \( %% \begin{array}{c|c} & \mathrm{[NO]} & \mathrm{[N}_{2}] & \mathrm{[O}_{2}]\\ \hline \text{Initial} & 0.250 & 0 & 0\\ \text{Change} & -2x & x & x\\ \text{Equilibrium} & 0.250-2x & x& x \end{array} %%"\ \)
03

Write the equilibrium constant expression

We are given \(K_c = 2.4 \times 10^3\). Then, let's write down the equilibrium constant expression using the equilibrium concentrations from the ICE table: \[K_c = \frac{\mathrm{[N}_{2}\mathrm{]}\mathrm{[O}_{2}\mathrm{]}}{\mathrm{[NO]^2}}\]
04

Substitute the equilibrium concentrations and solve for x

Now we substitute the equilibrium concentrations from the ICE table and solve for x: \[ 2.4 \times 10^3 = \frac{x \cdot x}{(0.250 - 2x)^2} \] Solve for x (let the solver find the positive root of the equation, since concentrations should be positive): \(x \approx 0.076\)
05

Find the equilibrium concentrations

Now that we have the value of x, we can plug it back into the equilibrium concentrations from the ICE table: \[\mathrm{[NO]_{eq}} = 0.250 - 2x \approx \] \[\mathrm{[N}_{2}]_{eq} = x \approx \] \[\mathrm{[O}_{2}]_{eq} = x \approx \] The equilibrium concentrations are as follows: \[\mathrm{[NO]} \approx 0.098 \: M\] \[\mathrm{[N}_{2}] \approx 0.076 \: M\] \[\mathrm{[O}_{2}] \approx 0.076 \: M\]

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

At \(900^{\circ} \mathrm{C}, K_{c}=0.0108\) for the reaction $$\mathrm{CaCO}_{3}(s) \rightleftharpoons \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$$ A mixture of \(\mathrm{CaCO}_{3}, \mathrm{CaO},\) and \(\mathrm{CO}_{2}\) is placed in a \(10.0-\mathrm{L}\) vessel at \(900^{\circ} \mathrm{C}\). For the following mixtures, will the amount of \(\mathrm{CaCO}_{3}\) increase, decrease, or remain the same as the system approaches equilibrium? (a) \(15.0 \mathrm{~g} \mathrm{CaCO}_{3}, 15.0 \mathrm{~g} \mathrm{CaO},\) and \(4.25 \mathrm{~g} \mathrm{CO}_{2}\) (b) \(2.50 \mathrm{~g} \mathrm{CaCO}_{3}, 25.0 \mathrm{~g} \mathrm{CaO},\) and \(5.66 \mathrm{~g} \mathrm{CO}_{2}\) (a) \(30.5 \mathrm{~g} \mathrm{CaCO}_{3}, 25.5 \mathrm{~g} \mathrm{CaO},\) and \(6.48 \mathrm{~g} \mathrm{CO}_{2}\)

The following equilibria were attained at \(298 \mathrm{~K}:\) $$\begin{array}{c} \mathrm{Ag}^{+}(a q)+\mathrm{Cl}^{-}(a q) \rightleftharpoons \mathrm{AgCl}(s) \quad K_{c}=5.6 \times 10^{9} \\ \mathrm{Ag}^{+}(a q)+2 \mathrm{NH}_{3}(a q) \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}(a q) \\ K_{c}=1.6 \times 10^{7}\end{array}$$ Based on these equilibria, calculate the equilibrium constant $\text { for } \mathrm{AgCl}(s)+2 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}(a q)+\mathrm{Cl}^{-}(a q)$ at \(298 \mathrm{~K}\).

At \(900^{\circ} \mathrm{C}, K_{p}=51.2\) for the equilibrium $$2 \mathrm{NOBr}(g) \rightleftharpoons 2 \mathrm{NO}(g)+\mathrm{Br}_{2}(g)$$ If the pressure of \(\mathrm{NO}(g)\) is half the pressure of \(\mathrm{NOBr}(g)\), what is the equilibrium pressure of \(\mathrm{Br}_{2}(g)\) ?

At \(700 \mathrm{~K}\), the equilibrium constant for the reaction $$\mathrm{CCl}_{4}(g) \rightleftharpoons \mathrm{C}(s)+2 \mathrm{Cl}_{2}(g)$$ is \(K_{p}=77\). A flask is charged with \(202.7 \mathrm{kPa}\) of \(\mathrm{CCl}_{4}\), which then reaches equilibrium at \(700 \mathrm{~K}\). (a) What fraction of the \(\mathrm{CCl}_{4}\) is converted into \(\mathrm{C}\) and \(\mathrm{Cl}_{2} ?\) (b) What are the partial pressures of \(\mathrm{CCl}_{4}\) and \(\mathrm{Cl}_{2}\) at equilibrium?

Calculate \(K_{c}\) at \(900 \mathrm{~K}\) for $2 \mathrm{CO}(g) \rightleftharpoons \mathrm{CO}_{2}(g)+\mathrm{C}(s)\( if \)K_{p}=0.0572$ at this temperature.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free