Chapter 15: Problem 72
If \(K_{c}=1\) for the equilibrium $3 \mathrm{~A}(g) \rightleftharpoons 2 \mathrm{~B}(g)$, what is the relationship between [A] and [B] at equilibrium?
Chapter 15: Problem 72
If \(K_{c}=1\) for the equilibrium $3 \mathrm{~A}(g) \rightleftharpoons 2 \mathrm{~B}(g)$, what is the relationship between [A] and [B] at equilibrium?
All the tools & learning materials you need for study success - in one app.
Get started for freeFor the reaction $\mathrm{I}_{2}(g)+\mathrm{Br}_{2}(g) \rightleftharpoons 2 \operatorname{IBr}(g), K_{c}=310\( at \)140^{\circ} \mathrm{C}$. Suppose that \(1.00 \mathrm{~mol}\) IBr in a \(5.00-\mathrm{L}\) flask is allowed to reach equilibrium at \(140^{\circ} \mathrm{C}\). What are the equilibrium concentrations of \(\mathrm{IBr}, \mathrm{I}_{2},\) and \(\mathrm{Br}_{2}\) ?
How do the following changes affect the value of the \(K_{P}\) for a gas-phase endothermic reaction: (a) increase in the total pressure by adding a noble gas, \((\mathbf{b})\) addition of a reactant, \((\mathbf{c})\) increase in the temperature (d) increase in the volume, \((\mathbf{e})\) decrease in the temperature?
The equilibrium constant for the reaction $$2 \mathrm{NO}(g)+\mathrm{Br}_{2}(g) \rightleftharpoons 2 \mathrm{NOBr}(g)$$ is \(K_{c}=1.3 \times 10^{-2}\) at \(1000 \mathrm{~K}\). (a) At this temperature does the equilibrium favor \(\mathrm{NO}\) and \(\mathrm{Br}_{2}\), or does it favor NOBr? (b) Calculate \(K_{c}\) for $2 \mathrm{NOBr}(g) \rightleftharpoons 2 \mathrm{NO}(g)+\mathrm{Br}_{2}(g) .$ (c) Calculate \(K_{c}\) for $\mathrm{NOBr}(g) \rightleftharpoons \mathrm{NO}(g)+\frac{1}{2} \mathrm{Br}_{2}(g)$.
Consider the equilibrium $$\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g)+\mathrm{Br}_{2}(g) \rightleftharpoons 2 \mathrm{NOBr}(g) $$ Calculate the equilibrium constant \(K_{p}\) for this reaction, given the following information (at \(298 \mathrm{~K}\) ): $$ \begin{array}{l} 2 \mathrm{NO}(g)+\mathrm{Br}_{2}(g) \rightleftharpoons 2 \mathrm{NOBr}(g) \quad K_{c}=2.0 \\ 2 \mathrm{NO}(g) \rightleftharpoons \mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \quad K_{c}=2.1 \times 10^{30} \end{array} $$
Calculate \(K_{c}\) at \(900 \mathrm{~K}\) for $2 \mathrm{CO}(g) \rightleftharpoons \mathrm{CO}_{2}(g)+\mathrm{C}(s)\( if \)K_{p}=0.0572$ at this temperature.
What do you think about this solution?
We value your feedback to improve our textbook solutions.