Calculate \(\left[\mathrm{H}^{+}\right]\) for each of the following solutions, and indicate whether the solution is acidic, basic, or neutral: (a) $\left[\mathrm{OH}^{-}\right]=7.3 \times 10^{-10} \mathrm{M}(\mathbf{b})\left[\mathrm{OH}^{-}\right]=0.015 \mathrm{M} ;$ (c) a solution in which \(\left[\mathrm{H}^{+}\right]\) is 10 times greater than \(\left[\mathrm{OH}^{-}\right]\).

Short Answer

Expert verified
Short Answer: (a) For \(\left[\mathrm{OH}^{-}\right]=7.3 \times 10^{-10} \mathrm{M}\), we find \(\left[\mathrm{H}^{+}\right]=1.37 \times 10^{-6} \mathrm{M}\). The solution is acidic. (b) For \(\left[\mathrm{OH}^{-}\right]=0.015 \mathrm{M}\), we find \(\left[\mathrm{H}^{+}\right]=6.67 \times 10^{-13} \mathrm{M}\). The solution is basic. (c) For a solution in which \(\left[\mathrm{H}^{+}\right]\) is 10 times greater than \(\left[\mathrm{OH}^{-}\right]\), we find \(\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-6.5} \mathrm{M}\). The solution is acidic.

Step by step solution

01

Part (a) Calculate \(\left[\mathrm{H}^{+}\right]\) for \(\left[\mathrm{OH}^{-}\right]=7.3\times10^{-10}\) M

To find the \(\left[\mathrm{H}^{+}\right]\), we will apply the ion product of water: \[K_w = \left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]= 1.0 \times 10^{-14}\] Now, substitute the given \(\left[\mathrm{OH}^{-}\right]\) value: \[1.0 \times 10^{-14} = \left[\mathrm{H}^{+}\right]\times(7.3\times10^{-10})\] Next, solve for \(\left[\mathrm{H}^{+}\right]\): \[\left[\mathrm{H}^{+}\right] = \frac{1.0 \times 10^{-14}}{7.3\times10^{-10}}\] \[\left[\mathrm{H}^{+}\right] = 1.37\times10^{-6}\] Since \(\left[\mathrm{H}^{+}\right] > \left[\mathrm{OH}^{-}\right]\), the solution is acidic.
02

Part (b) Calculate \(\left[\mathrm{H}^{+}\right]\) for \(\left[\mathrm{OH}^{-}\right]=0.015\) M

Apply the ion product of water again and substitute the given \(\left[\mathrm{OH}^{-}\right]\) value: \[1.0 \times 10^{-14} = \left[\mathrm{H}^{+}\right]\times 0.015\] Solve for \(\left[\mathrm{H}^{+}\right]\): \[\left[\mathrm{H}^{+}\right] = \frac{1.0 \times 10^{-14}}{0.015}\] \[\left[\mathrm{H}^{+}\right] = 6.67\times10^{-13}\] Since \(\left[\mathrm{H}^{+}\right] < \left[\mathrm{OH}^{-}\right]\), the solution is basic.
03

Part (c) Calculate \(\left[\mathrm{H}^{+}\right]\) when it is 10 times greater than \(\left[\mathrm{OH}^{-}\right]\)

We know that \(\left[\mathrm{H}^{+}\right]\) is 10 times greater than \(\left[\mathrm{OH}^{-}\right]\), so let's denote this relationship as: \[\left[\mathrm{H}^{+}\right] = 10\left[\mathrm{OH}^{-}\right]\] Now apply the ion product of water again: \[1.0 \times 10^{-14} = (10\left[\mathrm{OH}^{-}\right])\left[\mathrm{OH}^{-}\right]\] Solve for \(\left[\mathrm{OH}^{-}\right]\): \[\left[\mathrm{OH}^{-}\right]^2 = \frac{1.0 \times 10^{-14}}{10}\] \[\left[\mathrm{OH}^{-}\right] = \sqrt{1.0 \times 10^{-15}}\] \[\left[\mathrm{OH}^{-}\right] = 1.0\times10^{-7.5}\] Now we can find the \(\left[\mathrm{H}^{+}\right]\): \[\left[\mathrm{H}^{+}\right] = 10\left[\mathrm{OH}^{-}\right] = 10\times(1.0\times10^{-7.5}) = 1.0\times10^{-6.5}\] Since \(\left[\mathrm{H}^{+}\right] > \left[\mathrm{OH}^{-}\right]\), the solution is acidic.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Write the chemical equation and the \(K_{b}\) expression for the reaction of each of the following bases with water: (a) trimethylamine, \(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N} ;\) (b) sulfite, \(\mathrm{SO}_{3}^{2-}\); (c) cyanide, \(\mathrm{CN}^{-}\).

Predict the stronger acid in each pair: (a) \(\mathrm{HCl}\) or HF; (b) \(\mathrm{H}_{3} \mathrm{PO}_{4}\) or \(\mathrm{H}_{3} \mathrm{AsO}_{4} ;\) (c) \(\mathrm{HBrO}_{3}\) or \(\mathrm{HBrO}_{2}\) (d) \(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\) or \(\mathrm{HC}_{2} \mathrm{O}_{4} \overline{;} ;(\mathbf{e})\) benzoic acid \(\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)\) or phenol \(\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}\right) .\)

Calculate the pH of each of the following strong acid solutions: $(\mathbf{a}) 0.0178 \mathrm{M} \mathrm{HNO}_{3},(\mathbf{b}) 0.500 \mathrm{~g}$ of \(\mathrm{HClO}_{3}\) in \(5.00 \mathrm{~L}\) of solution, \((\mathbf{c}) 5.00 \mathrm{~mL}\) of $2.00 \mathrm{M} \mathrm{HCl}\( diluted to \)0.500 \mathrm{~L}$, (d) a mixture formed by adding \(75.0 \mathrm{~mL}\) of \(0.010 \mathrm{M} \mathrm{HCl}\) to \(125 \mathrm{~mL}\) of \(0.020 \mathrm{M} \mathrm{HBr}\).

Butyric acid is responsible for the foul smell of rancid butter. The \(\mathrm{pK}_{b}\) of the butyrate ion is 9.16. (a) Calculate the \(K_{a}\) for butyric acid. (b) Calculate the pH of a \(0.075 \mathrm{M}\) solution of butyric acid. (c) Calculate the \(\mathrm{pH}\) of a \(0.075 \mathrm{M}\) solution of sodium butyrate.

Deuterium oxide \(\left(\mathrm{D}_{2} \mathrm{O},\right.\) where \(\mathrm{D}\) is deuterium, the hydrogen- 2 isotope) has an ion-product constant, \(K_{w}\), of \(8.9 \times 10^{-16}\) at \(20^{\circ} \mathrm{C}\). Calculate \(\left[\mathrm{D}^{+}\right]\) and \(\left[\mathrm{OD}^{-}\right]\) for pure (neutral) \(\mathrm{D}_{2} \mathrm{O}\) at this temperature.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free