Calculate \(\left[\mathrm{OH}^{-}\right]\) for each of the following solutions, and indicate whether the solution is acidic, basic, or neutral: (a) $\left[\mathrm{H}^{+}\right]=0.00010 \mathrm{M} ;(\mathbf{b})\left[\mathrm{H}^{+}\right]=7.3 \times 10^{-14} \mathrm{M} ;(\mathbf{c})\( a solution in which \)\left[\mathrm{OH}^{-}\right]$ is 100 times greater than \(\left[\mathrm{H}^{+}\right]\).

Short Answer

Expert verified
Answer: (a) \([\mathrm{OH}^{-}]\) = \(1.0 \times 10^{-10} \mathrm{M}\), acidic (b) \([\mathrm{OH}^{-}]\) ≈ \(1.37 \times 10^{-1} \mathrm{M}\), basic (c) \([\mathrm{OH}^{-}]\) = \(1.0 \times 10^{-6} \mathrm{M}\), basic

Step by step solution

01

Calculate \([\mathrm{OH}^{-}]\)

Using the ion-product constant for water, \(K_w = \left[\mathrm{H}^{+}\right] \cdot \left[\mathrm{OH}^{-}\right] = 1.0 \times 10^{-14}\), solve for \([\mathrm{OH}^{-}]\): \[\left[\mathrm{OH}^{-}\right] = \frac{K_w}{\left[\mathrm{H}^{+}\right]} = \frac{1.0 \times 10^{-14}}{0.0001 \mathrm{M}} = 1.0 \times 10^{-10} \mathrm{M}\]
02

Compare \([\mathrm{H}^{+}]\) and \([\mathrm{OH}^{-}]\)

In this case, \[\left[\mathrm{H}^{+}\right] = 0.0001 \mathrm{M} > \left[\mathrm{OH}^{-}\right] = 1.0 \times 10^{-10} \mathrm{M}\]
03

Classify the solution

Since the hydrogen ion concentration is greater than the hydroxide ion concentration, the solution is acidic. (b) \[\left[\mathrm{H}^{+}\right] = 7.3 \times 10^{-14} \mathrm{M}\]
04

Calculate \([\mathrm{OH}^{-}]\)

Using the ion-product constant for water, solve for \([\mathrm{OH}^{-}]\): \[\left[\mathrm{OH}^{-}\right] = \frac{K_w}{\left[\mathrm{H}^{+}\right]} = \frac{1.0 \times 10^{-14}}{7.3 \times 10^{-14} \mathrm{M}} \approx 1.37 \times 10^{-1} \mathrm{M}\]
05

Compare \([\mathrm{H}^{+}]\) and \([\mathrm{OH}^{-}]\)

In this case, \[\left[\mathrm{H}^{+}\right] = 7.3 \times 10^{-14} \mathrm{M} < \left[\mathrm{OH}^{-}\right] \approx 1.37 \times 10^{-1} \mathrm{M}\]
06

Classify the solution

Since the hydrogen ion concentration is smaller than the hydroxide ion concentration, the solution is basic. (c) \[\left[\mathrm{OH}^{-}\right] = 100\left[\mathrm{H}^{+}\right]\]
07

Calculate \([\mathrm{OH}^{-}]\)

Again, using the ion-product constant for water, solve for \([\mathrm{OH}^{-}]\): \[\left[\mathrm{H}^{+}\right] \cdot \left[\mathrm{OH}^{-}\right] = K_w\] \[\left[\mathrm{H}^{+}\right] \cdot (100\left[\mathrm{H}^{+}\right]) = 1.0 \times 10^{-14}\] \[100\left[\mathrm{H}^{+}\right]^2 = 1.0 \times 10^{-14}\] \[\left[\mathrm{H}^{+}\right]^2 = 1.0 \times 10^{-16}\] \[\left[\mathrm{H}^{+}\right] = 1.0 \times 10^{-8} \mathrm{M}\] Now we can calculate \(\left[\mathrm{OH}^{-}\right]\): \[\left[\mathrm{OH}^{-}\right] = 100\left[\mathrm{H}^{+}\right] = 100(1.0 \times 10^{-8} \mathrm{M}) = 1.0 \times 10^{-6} \mathrm{M}\]
08

Compare \([\mathrm{H}^{+}]\) and \([\mathrm{OH}^{-}]\)

In this case, \[\left[\mathrm{H}^{+}\right] = 1.0 \times 10^{-8} \mathrm{M} < \left[\mathrm{OH}^{-}\right] = 1.0 \times 10^{-6} \mathrm{M}\]
09

Classify the solution

Since the hydrogen ion concentration is smaller than the hydroxide ion concentration, the solution is basic.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(a) Give the conjugate base of the following Brønsted Lowry acids: (i) \(\mathrm{H}_{2} \mathrm{PO}_{4}^{-},\) (ii) HBr. (b) Give the conjugate acid of the following Bronsted-Lowry bases: (i) \(\mathrm{CN}^{-},\) (ii) \(\mathrm{HSO}_{4}^{-}\).

Ammonia, \(\mathrm{NH}_{3}\), acts as an Arrhenius base, a Brønsted-Lowry base, and a Lewis base, in aqueous solution. Write out the reaction \(\mathrm{NH}_{3}\) undergoes with water and explain what properties of ammonia correspond to each of the three definitions of "base."

If a solution of hydrofluoric acid $\left(\mathrm{HF} ; K_{a}=6.8 \times 10^{-4}\right)\( has a \)\mathrm{pH}$ of 2.12 , calculate the concentration of hydrofluoric acid.

Consider two solutions, solution A and solution B. [H \(\left.^{+}\right]\) in solution A is 25 times greater than that in solution \(B\). What is the difference in the pH values of the two solutions?

Identify the Brønsted-Lowry acid and the BrønstedLowry base on the left side of each equation, and also identify the conjugate acid and conjugate base of each on the right side. $$ \begin{array}{l} \text { (a) } \mathrm{HBrO}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{BrO}^{-}(a q) \\\ \text { (b) } \mathrm{HSO}_{4}^{-}(a q)+\mathrm{HCO}_{3}^{-}(a q) \rightleftharpoons \mathrm{SO}_{4}^{2-}(a q)+\mathrm{H}_{2} \mathrm{CO}_{3}(a q) \\ \text { (c) } \mathrm{HSO}_{3}^{-}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q) \rightleftharpoons \mathrm{H}_{2} \mathrm{SO}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \end{array} $$

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free