Calculate \(\left[\mathrm{OH}^{-}\right]\) and \(\mathrm{pH}\) for each of the following strong base solutions: (a) \(0.182 \mathrm{M} \mathrm{KOH},\) (b) \(3.165 \mathrm{~g}\) of \(\mathrm{KOH}\) in 500.0 \(\mathrm{mL}\) of solution, \((\mathbf{c}) 10.0 \mathrm{~mL}\) of $0.0105 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}\( diluted to \)500.0 \mathrm{~mL},(\mathbf{d})\( a solution formed by mixing \)20.0 \mathrm{~mL}$ of 0.015 \(M \mathrm{Ba}(\mathrm{OH})_{2}\) with \(40.0 \mathrm{~mL}\) of $8.2 \times 10^{-3} \mathrm{M} \mathrm{NaOH}$.

Short Answer

Expert verified
For the given strong base solutions, we find the following: a) 0.182 M KOH: \([\mathrm{OH}^{-}] = 0.182 \mathrm{M}\) and \(pH \approx 13.26\) b) 3.165 g of KOH in 500.0 mL solution: \([\mathrm{OH}^{-}] = 0.1128 \mathrm{M}\) and \(pH \approx 13.05\) c) 10.0 mL of 0.0105 M Ca(OH)₂ diluted to 500.0 mL: \([\mathrm{OH}^{-}] = 0.00042 \mathrm{M}\) and \(pH \approx 10.62\) d) Solution formed by mixing 20.0 mL of 0.015 M Ba(OH)₂ with 40.0 mL of 8.2 × 10⁻³ M NaOH: \([\mathrm{OH}^{-}] = 0.01547 \mathrm{M}\) and \(pH \approx 12.19\)

Step by step solution

01

Find \([\mathrm{OH}^{-}]\)

Since KOH is a strong base, it will completely dissociate in water: \[ \mathrm{KOH} \rightarrow \mathrm{K}^{+} + \mathrm{OH}^{-}\] Therefore, \([\mathrm{OH}^{-}] = 0.182 \mathrm{M}\).
02

Calculate the pOH

Now, we need to find the pOH of the solution using the formula: \[pOH = -\log{[\mathrm{OH}^{-}]}\] Substituting the values, we get: \(pOH = -\log{(0.182)} \approx 0.74\)
03

Determine the pH

To find the pH, we use the relationship between pH and pOH: \(pH = 14 - pOH\) \(pH = 14 - 0.74 \approx 13.26\) So, for this solution, \([\mathrm{OH}^{-}] = 0.182 \mathrm{M}\) and \(pH \approx 13.26\). #b) Calculate \([\mathrm{OH}^{-}]\) and pH for a solution formed with 3.165 g of KOH in 500.0 mL#
04

Calculate the concentration of KOH

We need to find the molar concentration of the solution. The molar mass of KOH is \((39.10 + 16.00 + 1.01) = 56.11 \ g/mol\). First, we calculate moles of KOH dissolved: \(\frac{3.165g}{56.11g/mol} \approx 0.0564\ mol\) Now, we find the concentration of KOH: \(\frac{0.0564\ mol}{0.5\ L} = 0.1128\ M\)
05

Calculate \([\mathrm{OH}^{-}]\)

Just like in part a, \([\mathrm{OH}^{-}] = 0.1128\ M\).
06

Determine the pOH and pH

Using our formula, we find pOH: \(pOH = -\log{(0.1128)} \approx 0.95\) And finally, the pH: \(pH = 14 - 0.95 \approx 13.05\) For this solution, \([\mathrm{OH}^{-}] = 0.1128 \mathrm{M}\) and \(pH \approx 13.05\). #c) Calculate \([\mathrm{OH}^{-}]\) and pH for 10.0 mL of 0.0105 M \(\mathrm{Ca}(\mathrm{OH})_{2}\) diluted to 500.0 mL#
07

Determine the new concentration of \(\mathrm{Ca}(\mathrm{OH})_{2}\)

Using the dilution formula \(C_1V_1 = C_2V_2\), we calculate the new concentration of \(\mathrm{Ca}(\mathrm{OH})_{2}\) after dilution: \(C_2 = \frac{C_1V_1}{V_2} = \frac{0.0105M \times 0.010L}{0.5L} = 0.00021\ M\)
08

Calculate \([\mathrm{OH}^{-}]\)

When \(\mathrm{Ca}(\mathrm{OH})_{2}\) dissociates, it produces 2 moles of OH⁻ ions for each mole of the compound: \[ \mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{Ca}^{2+} + 2\mathrm{OH}^{-}\] Thus, \([\mathrm{OH}^{-}] = 2 \times 0.00021\ M = 0.00042\ M\).
09

Determine the pOH and pH

Calculating pOH and pH: \(pOH = -\log{(0.00042)} \approx 3.38\) \(pH = 14 - 3.38 \approx 10.62\) For this solution, \([\mathrm{OH}^{-}] = 0.00042 \mathrm{M}\) and \(pH \approx 10.62\). #d) Calculate \([\mathrm{OH}^{-}]\) and pH for a solution formed by mixing 20.0 mL of 0.015 M \(\mathrm{Ba}(\mathrm{OH})_{2}\) with 40.0 mL of \(8.2 \times 10^{-3}\ \mathrm{M}\ \mathrm{NaOH}\)#
10

Find moles of OH⁻ ions from each source

For \(\mathrm{Ba}(\mathrm{OH})_{2}\): \(0.015M \times 0.020L = 3.0\times 10^{-4}\ mol\) of \(\mathrm{Ba}(\mathrm{OH})_{2}\) Since each mole of \(\mathrm{Ba}(\mathrm{OH})_{2}\) produces 2 moles of OH⁻, we obtain \(2 \times 3.0\times 10^{-4}\ mol = 6.0\times 10^{-4} \ mol\) of \(\mathrm{OH}^{-}\). For \(\mathrm{NaOH}\): \(8.2\times 10^{-3}\ M \times 0.040L = 3.28 \times 10^{-4}\ mol\) of \(\mathrm{OH}^{-}\)
11

Calculate the total \([\mathrm{OH}^{-}]\)

Add up the moles of OH⁻ ions: \(total\ moles\ of\ OH^- = 6.0\times 10^{-4} + 3.28 \times 10^{-4} = 9.28 \times 10^{-4} \ mol\) Calculate the concentration of \(\mathrm{OH}^{-}\) knowing that the total volume of the solution is 60 mL: \([\mathrm{OH}^{-}] = \frac{9.28 \times 10^{-4}\ mol}{0.060L} = 0.01547\ M\)
12

Determine the pOH and pH

Now, calculate the pOH and pH: \(pOH = -\log{(0.01547)} \approx 1.81\) \(pH = 14 - 1.81 \approx 12.19\) In this solution, \([\mathrm{OH}^{-}] = 0.01547 \mathrm{M}\) and \(pH \approx 12.19\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Predict the stronger acid in each pair: (a) \(\mathrm{HCl}\) or HF; (b) \(\mathrm{H}_{3} \mathrm{PO}_{4}\) or \(\mathrm{H}_{3} \mathrm{AsO}_{4} ;\) (c) \(\mathrm{HBrO}_{3}\) or \(\mathrm{HBrO}_{2}\) (d) \(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\) or \(\mathrm{HC}_{2} \mathrm{O}_{4} \overline{;} ;(\mathbf{e})\) benzoic acid \(\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)\) or phenol \(\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}\right) .\)

Write the chemical equation and the \(K_{b}\) expression for the reaction of each of the following bases with water: (a) propylamine, $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NH}_{2} ;$ (b) monohydrogen phosphate ion, \(\mathrm{HPO}_{4}^{2-} ;(\mathbf{c})\) benzoate ion, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}^{-}$

A \(0.25 M\) solution of a salt NaA has \(\mathrm{pH}=9.29 .\) What is the value of \(K_{a}\) for the parent acid HA?

Ephedrine, a central nervous system stimulant, is used in nasal sprays as a decongestant. This compound is a weak organic base: $$ \mathrm{C}_{10} \mathrm{H}_{15} \mathrm{ON}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{C}_{10} \mathrm{H}_{15} \mathrm{ONH}^{+}(a q)+\mathrm{OH}^{-}(a q) $$ A \(0.035 \mathrm{M}\) solution of ephedrine has a \(\mathrm{pH}\) of 11.33 . (a) What are the equilibrium concentrations of $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{ON}, \mathrm{C}_{10} \mathrm{H}_{15} \mathrm{ONH}^{+},\( and \)\mathrm{OH}^{-} ?$ (b) Calculate \(K_{b}\) for ephedrine.

(a) Give the conjugate base of the following Brønsted Lowry acids: (i) \(\mathrm{H}_{2} \mathrm{PO}_{4}^{-},\) (ii) HBr. (b) Give the conjugate acid of the following Bronsted-Lowry bases: (i) \(\mathrm{CN}^{-},\) (ii) \(\mathrm{HSO}_{4}^{-}\).

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free