Using data from Appendix \(D\), calculate \(p O H\) and \(p H\) for each (a) \(0.080 M\) potassium hypobromite of the following solutions: \((\mathrm{KBrO}),\) (b) \(0.150 \mathrm{M}\) potassium hydrosulfide \((\mathrm{KHS}),(\mathbf{c})\) a mixture that is \(0.25 \mathrm{M}\) in potassium nitrite \(\left(\mathrm{KNO}_{2}\right)\) and \(0.15 \mathrm{M}\) in magnesium nitrite \(\left(\mathrm{Mg}\left(\mathrm{NO}_{2}\right)_{2}\right)\).

Short Answer

Expert verified
For 0.080 M potassium hypobromite, the \(pOH = 1.097\) and the \(pH = 12.903\). For a 0.150 M potassium hydrosulfide solution, the \(pOH = 10.675\) and the \(pH = 3.325\). For the mixture with \(0.25 \, \mathrm{M}\) potassium nitrite and \(0.15 \, \mathrm{M}\) magnesium nitrite, the \(pOH = 9.18\) and the \(pH = 4.82\).

Step by step solution

01

Identify the dissociation reaction

: The dissociation reaction of potassium hypobromite is: \[\mathrm{KBrO} \rightarrow \mathrm{K^+} + \mathrm{BrO^{-}}\]
02

Write the equilibrium expression

: The equilibrium expression for the reaction is: \[\mathrm{[OH^-]} = \mathrm{[BrO^-]}\]
03

Calculate the \(OH^-\) concentration

: Given the concentration of \(\mathrm{KBrO}\), \(\mathrm{[OH^-]} = 0.080 \, \mathrm{M}\)
04

Calculate \(pOH\) and \(pH\)

: \(pOH = -\log\left[\mathrm{OH^-}\right] = -\log\left(0.080\right)\) \(pOH = 1.097\) To find the pH, use the relationship: \(pH + pOH = 14\) \(pH = 14 - pOH = 14 - 1.097 = 12.903\) For 0.080 M potassium hypobromite, the \(pOH = 1.097\) and the \(pH = 12.903\). (b) For \(\mathrm{KHS}\) (potassium hydrosulfide) solution:
05

Identify the dissociation reaction

: The dissociation reaction of potassium hydrosulfide is: \[\mathrm{KHS} \rightarrow \mathrm{K^+} + \mathrm{HS^{-}}\]
06

Write the equilibrium expression

: The equilibrium expression for the reaction is: \[\mathrm{[H^+]} = \mathrm{K_a}\times\frac{\mathrm{[HS^-]}}{\mathrm{[H^+]}}\]
07

Calculate the \(H^+\) concentration

: Given the concentration of \(\mathrm{KHS}\), \(\mathrm{[HS^-]} = 0.150 \, \mathrm{M}\). For \(\mathrm{HS^{-}}\), the acid dissociation constant \(\mathrm{K_a}\) is \(1.3 × 10^{-7}\). Using the equilibrium expression, we can solve for the \(H^+\) concentration: \[\mathrm{[H^+]} = \sqrt{\mathrm{K_a} \times [\mathrm{HS^-}]} = \sqrt{(1.3 \times 10^{-7}) \times 0.150}\] \(\mathrm{[H^+]} = 4.74 \times 10^{-4} \, \mathrm{M}\)
08

Calculate \(pOH\) and \(pH\)

: \(pH = -\log\left[\mathrm{H^+}\right] = -\log\left(4.74 \times 10^{-4}\right)\) \(pH = 3.325\) To find the pOH, use the relationship: \(pH + pOH = 14\) \(pOH = 14 - pH = 14 - 3.325 = 10.675\) For a 0.150 M potassium hydrosulfide solution, the \(pOH = 10.675\) and the \(pH = 3.325\). (c) For \(\mathrm{KNO}_2\) and \(\mathrm{Mg(NO}_2)_2\) mixture: Since the given mixture contains more than one compound, we need to consider both compounds to calculate the \(OH^-\) concentration. The dissociation reactions are: \[\mathrm{KNO_2} \rightarrow \mathrm{K^+} + \mathrm{NO_2^{-}}\] \[\mathrm{Mg(NO_2)_2} \rightarrow \mathrm{Mg^{2+}} + 2\mathrm{NO_2^{-}}\]
09

Write the equilibrium expression

: The equilibrium expression for the reaction is: \[\mathrm{[OH^-]} = \mathrm{K_b[ NO_2^-]}\]
10

Calculate the \(OH^-\) concentration

: Given the concentration of \(\mathrm{KNO}_2\), \(\mathrm{[NO_2^-]} = 0.25 \, \mathrm{M}\) and for \(\mathrm{Mg(NO_2)_2}\), \(\mathrm{[NO_2^-]} = 0.3 \, \mathrm{M}\). The total \(\mathrm{NO_2^{-}}\) concentration is \(0.25 + 0.3 = 0.55 \, \mathrm{M}\). Using the equilibrium expression, we can solve for the \(OH^-\) concentration: \[\mathrm{[OH^-]} = \mathrm{K_b[ NO_2^-]} = 1.2 \times 10^{-9} \times 0.55\] \(\mathrm{[OH^-]} = 6.6 \times 10^{-10} \, \mathrm{M}\)
11

Calculate \(pOH\) and \(pH\)

: \(pOH = -\log\left[\mathrm{OH^-}\right] = -\log\left(6.6 \times 10^{-10}\right)\) \(pOH = 9.18\) To find the pH, use the relationship: \(pH + pOH = 14\) \(pH = 14 - pOH = 14 - 9.18 = 4.82\) For the mixture with \(0.25 \, \mathrm{M}\) potassium nitrite and \(0.15 \, \mathrm{M}\) magnesium nitrite, the \(pOH = 9.18\) and the \(pH = 4.82\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

At \(50^{\circ} \mathrm{C}\), the ion-product constant for $\mathrm{H}_{2} \mathrm{O}\( has the value \)K_{w}=5.48 \times 10^{-14} \cdot(\mathbf{a})$ What is the \(\mathrm{pH}\) of pure water at \(50^{\circ} \mathrm{C} ?\) (b) Based on the change in \(K_{w}\) with temperature, predict whether \(\Delta H\) is positive, negative, or zero for the autoionization reaction of water: $$ 2 \mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{OH}^{-}(a q) $$

If a neutral solution of water, with \(\mathrm{pH}=7.00,\) is cooled to \(10^{\circ} \mathrm{C},\) the pH rises to \(7.27 .\) Which of the following three statements is correct for the cooled water: (i) \(\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]\) (ii) \(\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right], \mathrm{or}\) (iii) \(\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right] ?\)

(a) Using dissociation constants from Appendix D, determine the value for the equilibrium constant for each of the following reactions. (i) $\mathrm{HCO}_{3}^{-}(a q)+\mathrm{OH}^{-}(a q) \rightleftharpoons \mathrm{CO}_{3}^{2-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$ (ii) $\mathrm{NH}_{4}^{+}(a q)+\mathrm{CO}_{3}^{2-}(a q) \rightleftharpoons \mathrm{NH}_{3}(a q)+\mathrm{HCO}_{3}^{-}(a q)$ (b) We usually use single arrows for reactions when the forward reaction is appreciable ( \(K\) much greater than 1) or when products escape from the system, so that equilibrium is never established. If we follow this convention, which of these equilibria might be written with a single arrow?

The active ingredient in aspirin is acetylsalicylic acid \(\left(\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}\right),\) a monoprotic acid with \(K_{a}=3.3 \times 10^{-4}\) at \(25^{\circ} \mathrm{C}\) What is the \(\mathrm{pH}\) of a solution obtained by dissolving one regular aspirin tablet, containing \(100 \mathrm{mg}\) of acetylsalicylic acid, in $200 \mathrm{~mL}$ of water?

Predict the stronger acid in each pair: (a) \(\mathrm{HCl}\) or HF; (b) \(\mathrm{H}_{3} \mathrm{PO}_{4}\) or \(\mathrm{H}_{3} \mathrm{AsO}_{4} ;\) (c) \(\mathrm{HBrO}_{3}\) or \(\mathrm{HBrO}_{2}\) (d) \(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\) or \(\mathrm{HC}_{2} \mathrm{O}_{4} \overline{;} ;(\mathbf{e})\) benzoic acid \(\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)\) or phenol \(\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}\right) .\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free