How many microliters of \(1.000 \mathrm{M} \mathrm{NaOH}\) solution must be added to \(25.00 \mathrm{~mL}\) of a \(0.1000 \mathrm{M}\) solution of lactic acid \(\left[\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}\right.\) or \(\left.\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}\right]\) to produce a buffer with \(\mathrm{pH}=3.75 ?\)

Short Answer

Expert verified
To create a buffer with a pH of 3.75, 6.99 µL of 1.000 M NaOH solution must be added to the 25.00 mL of the 0.1000 M lactic acid solution.

Step by step solution

01

Calculate the concentration of lactic acid initially

The given concentration of the lactic acid solution is \(0.1000 \mathrm{M}\). So, Initial concentration of lactic acid, \([\mathrm{HA}]_{\mathrm{initial}} =0.1000 \mathrm{M}\)
02

Calculate the moles of \(\mathrm{NaOH}\) needed using the Henderson-Hasselbalch equation

We are given that the \(\mathrm{pH}=3.75\). Now, we use the Henderson-Hasselbalch equation: We have, \(\mathrm{pH} = \mathrm{p}K_\mathrm{a} + \log \frac{[\mathrm{A}^-_{\mathrm{eq}}]}{[\mathrm{HA}_{\mathrm{eq}}]}\) Rearranging for \([\mathrm{A}^-_{\mathrm{eq}}]\), $ [\mathrm{A}^-_{\mathrm{eq}}]= [\mathrm{HA}_{\mathrm{eq}}] \cdot 10^{\left(\mathrm{pH}-\mathrm{p}K_\mathrm{a}\right)} $ Now, we can calculate the moles of the conjugate base \(\mathrm{A}^-\) formed: moles of \(\mathrm{A}^-\) formed \(= \mathrm{moles} \;[\mathrm{HA}]_{\mathrm{initial}} - \mathrm{moles}\; [\mathrm{HA}]_{\mathrm{eq}}\) The moles of \(\mathrm{OH}^-\) ions required \(= \mathrm{moles} \; \mathrm{A}^-\).
03

Calculate the volume of \(1.000 \mathrm{M} \mathrm{NaOH}\) solution required

Using the concentration of \(\mathrm{NaOH}\), we can calculate the volume of the \(\mathrm{NaOH}\) solution required to form the desired buffer solution: Volume of \(\mathrm{NaOH}\) solution \(= \dfrac{\mathrm{moles} \; \mathrm{OH}^-}{[\mathrm{OH}^-]}\) Now, we plug in the values to find the volume of the \(\mathrm{NaOH}\) solution. First, let's find the moles of \(\mathrm{HA}_{\mathrm{eq}}}\): \([\mathrm{HA}_{\mathrm{eq}}] = \left( 0.1000 - \rm{moles \; {A}^-}\right)\phantom{.}\mathrm{M}\) Now, we can use the Henderson-Hasselbalch equation to find \(\mathrm{moles} \; \mathrm{A}^-\): $ [\mathrm{A}^-_{\mathrm{eq}}]= [\mathrm{HA}_{\mathrm{eq}}] \cdot 10^{\left(\mathrm{pH}-\mathrm{p}K_\mathrm{a}\right)} $ \(\Longrightarrow \mathrm{moles} \; \mathrm{A}^- = \frac{0.1000 - \mathrm{moles} \; \mathrm{A}^-}{\mathrm{L}} \cdot 10^{\left(3.75-\log 1.38 \cdot 10^{-4}\right)}\) Solving the equation, we get: \(\mathrm{moles} \; \mathrm{A}^- = 6.989 \cdot 10^{-4}\;\mathrm{mol}\) Finally, we calculate the volume of \(\mathrm{NaOH}\) solution: Volume of \(\mathrm{NaOH}\) solution \(= \dfrac{6.989 \cdot 10^{-4}\;\mathrm{mol}}{1.000 \phantom{.}\mathrm{M}}\) \(\Longrightarrow V_\mathrm{NaOH} = 6.99\;\mathrm{µL}\) Therefore, \(6.99\;\mathrm{µL}\) of \(1.000\;\mathrm{M}\;\mathrm{NaOH}\) solution must be added to the \(25.00\;\mathrm{mL}\) of the \(0.1000\;\mathrm{M}\) lactic acid solution to produce a buffer with \(\mathrm{pH}=3.75\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider the titration of \(30.0 \mathrm{~mL}\) of $0.050 \mathrm{M} \mathrm{NH}_{3}\( with \)0.025 M$ HCl. Calculate the pH after the following volumes of titrant have been added: $(\mathbf{a}) 0 \mathrm{~mL},(\mathbf{b}) 20.0 \mathrm{~mL},\( (c) 59.0 \)\mathrm{mL},(\mathbf{d}) 60.0 \mathrm{~mL},(\mathbf{e}) 61.0 \mathrm{~mL},(\mathbf{f}) 65.0 \mathrm{~mL} .$

Aspirin has the structural formula At body temperature $\left(37^{\circ} \mathrm{C}\right), K_{a}\( for aspirin equals \)3 \times 10^{-5}$. If two aspirin tablets, each having a mass of \(325 \mathrm{mg}\), are dissolved in a full stomach whose volume is \(1 \mathrm{~L}\) and whose \(\mathrm{pH}\) is 2 , what percent of the aspirin is in the form of neutral molecules?

A 1.50-L solution saturated at \(25^{\circ} \mathrm{C}\) with cobalt carbonate \(\left(\mathrm{CoCO}_{3}\right)\) contains \(2.71 \mathrm{mg}\) of \(\mathrm{CoCO}_{3} .\) Calculate the solubility-product constant for this salt at \(25^{\circ} \mathrm{C}\).

Consider the equilibrium $$ \mathrm{B}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{HB}^{+}(a q)+\mathrm{OH}^{-}(a q) $$ Suppose that a salt of \(\mathrm{HB}^{+}(a q)\) is added to a solution of \(\mathrm{B}(a q)\) at equilibrium. (a) Will the equilibrium constant for the reaction increase, decrease, or stay the same? (b) Will the concentration of \(\mathrm{B}(a q)\) increase, decrease, or stay the same? (c) Will the pH of the solution increase, decrease, or stay the same?

Derive an equation similar to the Henderson-Hasselbalch equation relating the pOH of a buffer to the \(\mathrm{pK}_{b}\) of its base component.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free