(c) Calculate the maximum useful work
To calculate the maximum useful work that can be accomplished under standard conditions, we need to use the Gibbs free energy change (\(\Delta G\)). This can be calculated from the enthalpy change (\(\Delta H\)) and the change in entropy (\(\Delta S\)) using this equation:
\[ \Delta G = \Delta H - T\Delta S \]
We first need to find the values of the standard molar entropy (\(S^\circ\)) for all the compounds involved in the reaction:
\[ S^\circ[\mathrm{C}_2\mathrm{H}_2(g)] = 200.8\,\mathrm{J}/\mathrm{mol}\cdot\mathrm{K} \]
\[ S^\circ[\mathrm{O}_2(g)] = 205.03\,\mathrm{J}/\mathrm{mol}\cdot\mathrm{K} \]
\[ S^\circ[\mathrm{CO}_2(g)] = 213.79\,\mathrm{J}/\mathrm{mol}\cdot\mathrm{K} \]
\[ S^\circ[\mathrm{H}_2\mathrm{O}(l)] = 69.95\,\mathrm{J}/\mathrm{mol}\cdot\mathrm{K} \]
Now, we will calculate the change in entropy for the reaction, \(\Delta S\), as the difference between the entropy of products and reactants:
\[ \Delta S = \sum{nS^\circ}(\text{products}) - \sum{nS^\circ}(\text{reactants}) \]
(1) Calculate the entropy of reactants:
\[ 2\,\mathrm{C}_2\mathrm{H}_2 = 2 \times 200.8\,\mathrm{J}/\mathrm{mol}\cdot\mathrm{K} = 401.6\,\mathrm{J}/\mathrm{mol}\cdot\mathrm{K} \]
(2) Calculate the entropy of products:
\[ 4\,\mathrm{CO}_2 = 4 \times 213.79\,\mathrm{J}/\mathrm{mol}\cdot\mathrm{K} = 855.16\,\mathrm{J}/\mathrm{mol}\cdot\mathrm{K} \]
\[ 2\,\mathrm{H}_2\mathrm{O} = 2 \times 69.95\,\mathrm{J}/\mathrm{mol}\cdot\mathrm{K} = 139.9\,\mathrm{J}/\mathrm{mol}\cdot\mathrm{K} \]
(3) Calculate the change in entropy, \(\Delta S\):
\[ \Delta S = (855.16 + 139.9) - 401.6 \]
\[ \Delta S = 593.46\,\mathrm{J}/\mathrm{mol}\cdot\mathrm{K} \]
Now, we can use the values of \(\Delta H_{rxn}\) and \(\Delta S\) to find the value of \(\Delta G\):
\[ \Delta G = \Delta H_{rxn} - (T \times \Delta S) \]
At standard conditions, \(T = 298\,\mathrm{K}\). Therefore,
\[ \Delta G = -2095.388\,\mathrm{kJ}/\mathrm{mol} - (298\,\mathrm{K} \times 0.59346\,\mathrm{kJ}/\mathrm{mol}\cdot\mathrm{K}) \]
\[ \Delta G = -2095.388 - 177.171\,\mathrm{kJ}/\mathrm{mol} \]
\[ \Delta G = -2272.559\,\mathrm{kJ}/\mathrm{mol} \]
The maximum useful work that can be accomplished under standard conditions for this reaction is \(2272.559\,\mathrm{kJ}\).