Using data from Appendix \(\mathrm{C}\), write the equilibrium-constant expression and calculate the value of the equilibrium constant and the free- energy change for these reactions at \(298 \mathrm{~K}:\) (a) $\mathrm{NaHCO}_{3}(s) \rightleftharpoons \mathrm{NaOH}(s)+\mathrm{CO}_{2}(g)$ (b) $2 \mathrm{HBr}(g)+\mathrm{Cl}_{2}(g) \rightleftharpoons 2 \mathrm{HCl}(g)+\mathrm{Br}_{2}(g)$ (c) $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{SO}_{3}(g)$

Short Answer

Expert verified
(a) For the reaction \(\mathrm{NaHCO}_{3}(s) \rightleftharpoons \mathrm{NaOH}(s)+\mathrm{CO}_{2}(g)\), the equilibrium constant is \(K = 2.49 \times 10^{-3}\), and the free energy change is \(\Delta G = 16.6 \,\mathrm{kJ/mol}\). (b) For the reaction \(2 \mathrm{HBr}(g)+\mathrm{Cl}_{2}(g) \rightleftharpoons 2 \mathrm{HCl}(g)+\mathrm{Br}_{2}(g)\), the equilibrium constant is \(K = 6.80 \times 10^{26}\), and the free energy change is \(\Delta G = -155.2 \,\mathrm{kJ/mol}\). (c) For the reaction \(2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{SO}_{3}(g)\), the equilibrium constant is \(K = 1.24 \times 10^{18}\), and the free energy change is \(\Delta G = -140.4 \,\mathrm{kJ/mol}\).

Step by step solution

01

a. Equilibrium constant expression

For this reaction, the equilibrium constant expression is: \(K = \frac{[\mathrm{CO}_{2}]}{[\mathrm{NaHCO}_{3}]}\)
02

b. Standard free energy change

Calculate the standard free energy change for the reaction by using the equation: \(\Delta G^\circ = \Delta G^\circ({\mathrm{products}}) - \Delta G^\circ({\mathrm{reactants}})\) We can look up the values in Appendix C: \(\Delta G^\circ_{\mathrm{NaHCO}_3} = -745.7 \,\mathrm{kJ/mol}\) \(\Delta G^\circ_{\mathrm{NaOH}} = -367.7 \,\mathrm{kJ/mol}\) \(\Delta G^\circ_{\mathrm{CO}_2} = -394.4 \,\mathrm{kJ/mol}\) \(\Delta G^\circ = (-367.7 - 394.4) \,\mathrm{kJ/mol} - (-745.7 \,\mathrm{kJ/mol}) = 16.6 \,\mathrm{kJ/mol}\)
03

c. Equilibrium constant

Calculate the equilibrium constant by using the equation: \(K = e^{-\frac{\Delta G^\circ}{RT}}\) Where \(R = 8.314 \,\mathrm{J/(mol\,K)}\) and \(T = 298 \,\mathrm{K}\): \(K = e^{-\frac{16600 \,\mathrm{J/mol}}{(8.314 \,\mathrm{J/(mol\,K)})(298 \,\mathrm{K})}} = 2.49 \times 10^{-3}\)
04

d. Free energy change

Since we have the equilibrium constant and standard free energy change, the free energy change for the reaction is: \(\Delta G = \Delta G^\circ = 16.6 \,\mathrm{kJ/mol}\) Now we repeat this analysis for the two other reactions. Reaction (b): \(2 \mathrm{HBr}(g)+\mathrm{Cl}_{2}(g) \rightleftharpoons 2 \mathrm{HCl}(g)+\mathrm{Br}_{2}(g)\) We follow the same steps as in reaction (a):
05

Equilibrium constant expression

Here the equilibrium constant expression is: \(K = \frac{[\mathrm{HCl}]^2[\mathrm{Br}_{2}]}{[\mathrm{HBr}]^2[\mathrm{Cl}_2]}\)
06

Standard free energy change

Calculate the standard free energy change for the reaction using the data from Appendix C: \(\Delta G^\circ_{\mathrm{HBr}} = -53.6 \,\mathrm{kJ/mol}\) \(\Delta G^\circ_{\mathrm{Cl}_2} = 0 \,\mathrm{kJ/mol}\) \(\Delta G^\circ_{\mathrm{HCl}} = -131.2 \,\mathrm{kJ/mol}\) \(\Delta G^\circ_{\mathrm{Br}_2} = 0 \,\mathrm{kJ/mol}\) \(\Delta G^\circ = 2(-131.2) + 0 - 2(-53.6) = -155.2 \,\mathrm{kJ/mol}\)
07

Equilibrium constant

Calculate the equilibrium constant: \(K = e^{-\frac{-155200 \,\mathrm{J/mol}}{(8.314 \,\mathrm{J/(mol\,K)})(298 \,\mathrm{K})}} = 6.80 \times 10^{26}\)
08

Free energy change

The free energy change for the reaction is: \(\Delta G = \Delta G^\circ = -155.2 \,\mathrm{kJ/mol}\) Reaction (c): \(2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{SO}_{3}(g)\) Again, we follow the same steps:
09

Equilibrium constant expression

The equilibrium constant expression is: \(K = \frac{[\mathrm{SO}_{3}]^2}{[\mathrm{SO}_2]^2[\mathrm{O}_2]}\)
10

Standard free energy change

Calculate the standard free energy change for the reaction: \(\Delta G^\circ_{\mathrm{SO}_2} = -300.2 \,\mathrm{kJ/mol}\) \(\Delta G^\circ_{\mathrm{O}_2} = 0 \,\mathrm{kJ/mol}\) \(\Delta G^\circ_{\mathrm{SO}_3} = -370.4 \,\mathrm{kJ/mol}\) \(\Delta G^\circ = 2(-370.4) - 2(-300.2) = -140.4 \,\mathrm{kJ/mol}\)
11

Equilibrium constant

Calculate the equilibrium constant: \(K = e^{-\frac{-140400 \,\mathrm{J/mol}}{(8.314 \,\mathrm{J/(mol\,K)})(298 \,\mathrm{K})}} = 1.24 \times 10^{18}\)
12

Free energy change

The free energy change for the reaction is: \(\Delta G = \Delta G^\circ = -140.4 \,\mathrm{kJ/mol}\) To sum up, we found the following results for the three reactions: (a) K = \(2.49 \times 10^{-3}\), \(\Delta G = 16.6 \,\mathrm{kJ/mol}\) (b) K = \(6.80 \times 10^{26}\), \(\Delta G = -155.2 \,\mathrm{kJ/mol}\) (c) K = \(1.24 \times 10^{18}\), \(\Delta G = -140.4 \,\mathrm{kJ/mol}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(a) Write the chemical equations that correspond to \(\Delta G_{i}^{9}\) for \(\mathrm{CH}_{4}(g)\) and for \(\mathrm{NaCl}(s) .\) (b) For these formation reactions, compare \(\Delta G_{f}^{\circ}\) and \(\Delta H_{f}\). (c) In general, under which condition is \(\Delta G\), more negative (less positive) than \(\Delta H_{f}\) ? (i) When the temperature is high, (ii) when \(\Delta S_{f}^{\circ}\) is positive, (iii) when the reaction is reversible.

Consider the reaction $2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{NO}_{2}(g)$ (a) Using data from Appendix \(\mathrm{C},\) calculate \(\Delta G^{\circ}\) at \(298 \mathrm{~K}\). (b) Calculate \(\Delta G\) at \(298 \mathrm{~K}\) if the partial pressures of all gases are \(33.4 \mathrm{kPa}\).

Indicate whether each statement is true or false. (a) The second law of thermodynamics says that entropy can only be produced but cannot not be destroyed. (b) In a certain process the entropy of the system changes by $1.2 \mathrm{~J} / \mathrm{K}\( (increase) and the entropy of the surroundings changes by \)-1.2 \mathrm{~J} / \mathrm{K}$ (decrease). Thus, this process must be spontaneous. (c) In a certain process the entropy of the system changes by $1.3 \mathrm{~J} / \mathrm{K}\( (increase) and the entropy of the surroundings changes by \)-1.2 \mathrm{~J} / \mathrm{K}$ (decrease). Thus, this process must be reversible.

For each of the following pairs, predict which substance possesses the larger entropy per mole: (a) \(1 \mathrm{~mol}\) of \(\mathrm{O}_{2}(g)\) at \(300^{\circ} \mathrm{C}, 1.013 \mathrm{kPa},\) or \(1 \mathrm{~mol}\) of \(\mathrm{O}_{3}(g)\) at \(300^{\circ} \mathrm{C}, 1.013 \mathrm{kPa} ;\) (b) \(1 \mathrm{~mol}\) of \(\mathrm{H}_{2} \mathrm{O}(g)\) at $100^{\circ} \mathrm{C}, 101.3 \mathrm{kPa}\(, or \)1 \mathrm{~mol}\( of \)\mathrm{H}_{2} \mathrm{O}(l)$ at $100^{\circ} \mathrm{C}, 101.3 \mathrm{kPa} ;(\mathbf{c}) 0.5 \mathrm{~mol}\( of \)\mathrm{N}_{2}(g)\( at \)298 \mathrm{~K}, 20-\mathrm{L}$. vol- ume, or \(0.5 \mathrm{~mol} \mathrm{CH}_{4}(g)\) at $298 \mathrm{~K}, 20-\mathrm{L}$ volume; (d) \(100 \mathrm{~g}\) \(\mathrm{Na}_{2} \mathrm{SO}_{4}(s)\) at \(30^{\circ} \mathrm{C}\) or $100 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}(a q)\( at \)30^{\circ} \mathrm{C}$

(a) Using data in Appendix \(C\), estimate the temperature at which the free- energy change for the transformation from \(\mathrm{I}_{2}(s)\) to \(\mathrm{I}_{2}(g)\) is zero. (b) Use a reference source, such as Web Elements (www.webelements.com), to find the experimental melting and boiling points of \(I_{2}\). (c) Which of the values in part (b) is closer to the value you obtained in part (a)?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free