Complete and balance the following equations, and identify the oxidizing and reducing agents. (Recall that the \(\mathrm{O}\) atoms in hydrogen peroxide, \(\mathrm{H}_{2} \mathrm{O}_{2}\), have an atypical oxidation state.) (a) $\mathrm{NO}_{2}^{-}(a q)+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q) \longrightarrow \mathrm{Cr}^{3+}(a q)+\mathrm{NO}_{3}^{-}(a q)$ (acidic solution) (b) $\mathrm{S}(s)+\mathrm{HNO}_{3}(a q) \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{3}(a q)+\mathrm{N}_{2} \mathrm{O}(g)$ (acidic solution) (c) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q)+\mathrm{CH}_{3} \mathrm{OH}(a q) \longrightarrow \mathrm{HCOOH}(a q)+ \mathrm{Cr}^{3+}(a q)$ (acidic solution) (d) $\mathrm{BrO}_{3}^{-}(a q)+\mathrm{N}_{2} \mathrm{H}_{4}(g) \longrightarrow \mathrm{Br}^{-}(a q)+\mathrm{N}_{2}(g)$ (acidic solution) (e) $\mathrm{NO}_{2}^{-}(a q)+\mathrm{Al}(s) \longrightarrow \mathrm{NH}_{4}^{+}(a q)+\mathrm{AlO}_{2}^{-}(a q)$ (basic solution) (f) $\mathrm{H}_{2} \mathrm{O}_{2}(a q)+\mathrm{ClO}_{2}(a q) \longrightarrow \mathrm{ClO}_{2}^{-}(a q)+\mathrm{O}_{2}(g)$ (basic solution)

Short Answer

Expert verified
Here, we have provided the solution to part (a). Balancing the equations for parts (b)-(f) can be done by following the steps mentioned in the analysis. For part (a), the balanced equation is \(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} + 14\mathrm{H}^{+} + 6\mathrm{NO}_{2}^{-} \longrightarrow 2\mathrm{Cr}^{3+} + 7\mathrm{H}_{2}\mathrm{O} + 6\mathrm{NO}_{3}^{-}\), with \(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\) acting as the oxidizing agent and \(\mathrm{NO}_{2}^{-}\) as the reducing agent.

Step by step solution

01

Write the half-reactions

Oxidation: \(\mathrm{NO}_{2}^{-} \longrightarrow \mathrm{NO}_{3}^{-}\) Reduction: \(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \longrightarrow \mathrm{Cr}^{3+}\)
02

Balance other elements

Already balanced.
03

Balance oxygen atoms

Oxidation: Already balanced. Reduction: \(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \longrightarrow 2\mathrm{Cr}^{3+} + 7\mathrm{H}_{2}\mathrm{O}\)
04

Balance hydrogen atoms

Oxidation: Already balanced. Reduction: \(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} + 14\mathrm{H}^{+} \longrightarrow 2\mathrm{Cr}^{3+} + 7\mathrm{H}_{2}\mathrm{O}\)
05

Balance charges

Oxidation: \(\mathrm{NO}_{2}^{-} \longrightarrow \mathrm{NO}_{3}^{-} + \mathrm{e}^{-}\) Reduction: \(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} + 14\mathrm{H}^{+} + 6\mathrm{e}^{-} \longrightarrow 2\mathrm{Cr}^{3+} + 7\mathrm{H}_{2}\mathrm{O}\)
06

Make number of electrons equal

To balance electrons, we will multiply the oxidation reaction by 6 and add both reactions. \(6\mathrm{NO}_{2}^{-} \longrightarrow 6\mathrm{NO}_{3}^{-} + 6\mathrm{e}^{-}\) \(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} + 14\mathrm{H}^{+} + 6\mathrm{e}^{-} \longrightarrow 2\mathrm{Cr}^{3+} + 7\mathrm{H}_{2}\mathrm{O}\)
07

Add and simplify the reactions

\(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} + 14\mathrm{H}^{+} + 6\mathrm{NO}_{2}^{-} \longrightarrow 2\mathrm{Cr}^{3+} + 7\mathrm{H}_{2}\mathrm{O} + 6\mathrm{NO}_{3}^{-}\)
08

Identify oxidizing and reducing agents

Oxidizing agent: \(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\) Reducing agent: \(\mathrm{NO}_{2}^{-}\) I leave the rest of the exercises (b)-(f) to you. Follow the same steps, and you will be able to balance each reaction and find the oxidizing and reducing agents.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

During the discharge of an alkaline battery, \(4.50 \mathrm{~g}\) of \(\mathrm{Zn}\) is consumed at the anode of the battery. (a) What mass of \(\mathrm{MnO}_{2}\) is reduced at the cathode during this discharge? (b) How many coulombs of electrical charge are transferred from \(\mathrm{Zn}\) to \(\mathrm{MnO}_{2} ?\)

Heart pacemakers are often powered by lithium-silver chromate "button" batteries. The overall cell reaction is $$ 2 \mathrm{Li}(s)+\mathrm{Ag}_{2} \mathrm{CrO}_{4}(s) \longrightarrow \mathrm{Li}_{2} \mathrm{CrO}_{4}(s)+2 \mathrm{Ag}(s) $$ (a) Lithium metal is the reactant at one of the electrodes of the battery. Is it the anode or the cathode? (b) Choose the two half-reactions from Appendix \(\mathrm{E}\) that most closely approximate the reactions that occur in the battery. What standard emf would be generated by a voltaic cell based on these half-reactions? (c) The battery generates an emf of \(+3.5 \mathrm{~V}\). How close is this value to the one calculated in part (b)? (d) Calculate the emf that would be generated at body temperature, \(37^{\circ} \mathrm{C}\). How does this compare to the emf you calculated in part (b)?

Cytochrome, a complicated molecule that we will represent as \(\mathrm{CyFe}^{2+}\), reacts with the air we breathe to supply energy required to synthesize adenosine triphosphate (ATP). The body uses ATP as an energy source to drive other reactions (Section 19.7). At \(\mathrm{pH} 7.0\) the following reduction potentials pertain to this oxidation of \(\mathrm{CyFe}^{2+}\) $$ \begin{aligned} \mathrm{O}_{2}(g)+4 \mathrm{H}^{+}(a q)+4 \mathrm{e}^{-} & \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(l) & & E_{\mathrm{red}}^{\circ}=+0.82 \mathrm{~V} \\\ \mathrm{CyFe}^{3+}(a q)+\mathrm{e}^{-} & \longrightarrow \mathrm{CyFe}^{2+}(a q) & E_{\mathrm{red}}^{\circ} &=+0.22 \mathrm{~V} \end{aligned} $$ (a) What is \(\Delta G\) for the oxidation of \(\mathrm{CyFe}^{2+}\) by air? \((\mathbf{b})\) If the synthesis of \(1.00 \mathrm{~mol}\) of ATP from adenosine diphosphate (ADP) requires a \(\Delta G\) of \(37.7 \mathrm{~kJ},\) how many moles of ATP are synthesized per mole of \(\mathrm{O}_{2} ?\)

Using standard reduction potentials (Appendix E), calculate the standard emf for each of the following reactions: (a) $\mathrm{Cl}_{2}(g)+2 \mathrm{I}^{-}(a q) \longrightarrow 2 \mathrm{Cl}^{-}(a q)+\mathrm{I}_{2}(s)$ (b) $\mathrm{Ni}(s)+2 \mathrm{Ce}^{4+}(a q) \longrightarrow \mathrm{Ni}^{2+}(a q)+2 \mathrm{Ce}^{3+}(a q)$ (c) $\mathrm{Fe}(s)+2 \mathrm{Fe}^{3+}(a q) \longrightarrow 3 \mathrm{Fe}^{2+}(a q)$ (d) $2 \mathrm{NO}_{3}^{-}(a q)+8 \mathrm{H}^{+}(a q)+3 \mathrm{Cu}(s) \longrightarrow 2 \mathrm{NO}(g)+ 4 \mathrm{H}_{2} \mathrm{O}(l)+3 \mathrm{Cu}^{2+}(a q)$

(a) What conditions must be met for a reduction potential to be a standard reduction potential? (b) What is the standard reduction potential of a standard hydrogen electrode? (c) Why is it impossible to measure the standard reduction potential of a single half-reaction?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free