Given the following reduction half-reactions:
$$
\begin{aligned}
\mathrm{Fe}^{3+}(a q)+\mathrm{e}^{-} \longrightarrow \mathrm{Fe}^{2+}(a q) &
E_{\mathrm{red}}^{\circ}=+0.77 \mathrm{~V} \\
\mathrm{~S}_{2} \mathrm{O}_{6}^{2-}(a q)+4 \mathrm{H}^{+}(a q)+2
\mathrm{e}^{-} \longrightarrow 2 \mathrm{H}_{2} \mathrm{SO}_{3}(a q) &
E_{\mathrm{red}}^{\circ}=+0.60 \mathrm{~V} \\
\mathrm{~N}_{2} \mathrm{O}(g)+2 \mathrm{H}^{+}(a q)+2 \mathrm{e}^{-}
\longrightarrow \mathrm{N}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l) &
E_{\mathrm{red}}^{\circ}=-1.77 \mathrm{~V} \\
\mathrm{VO}_{2}^{+}(a q)+2 \mathrm{H}^{+}(a q)+\mathrm{e}^{-} \longrightarrow
\mathrm{VO}^{2+}+\mathrm{H}_{2} \mathrm{O}(l) & E_{\mathrm{red}}^{\circ}=+1.00
\mathrm{~V}
\end{aligned}
$$
(a) Write balanced chemical equations for the oxidation of $\mathrm{Fe}^{2+}(a
q)\( by \)\mathrm{S}_{2} \mathrm{O}_{6}^{2-}(a q),\( by \)\mathrm{N}_{2}
\mathrm{O}(a q),\( and by \)\mathrm{VO}_{2}^{+}(a q)\( (b) Calculate \)\Delta
G^{\circ}\( for each reaction at \)298 \mathrm{~K}$. (c) Calculate the
equilibrium constant \(K\) for each reaction at \(298 \mathrm{~K}\).